Truncated Weibull power Lomax distribution: statistical properties and applications :
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 8, p. 543-551 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

A new four-parameter distribution, called the truncated Weibull power Lomax (TWPL) distribution is introduced. We calculate the density (pdf), distribution function (cdf), quantile function, r$^{\rm th}$ moment, inequality measures, and order statistics. Maximum Likelihood methods to estimate the TWPL distribution parameters are proposed. Two real data sets are applied to illustrate the flexibility of the TWPL model compared with some Known distributions.

DOI : 10.22436/jnsa.012.08.05
Classification : 60E05, 62E10, 62N05
Keywords: Power Lomax distribution, truncated Weibull-G family, moments, order statistics

Al-Marzouki, Sanaa   1

1 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
@article{10_22436_jnsa_012_08_05,
     author = {Al-Marzouki, Sanaa },
     title = {Truncated {Weibull} power {Lomax} distribution: statistical properties and applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {543-551},
     year = {2019},
     volume = {12},
     number = {8},
     doi = {10.22436/jnsa.012.08.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.05/}
}
TY  - JOUR
AU  - Al-Marzouki, Sanaa 
TI  - Truncated Weibull power Lomax distribution: statistical properties and applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 543
EP  - 551
VL  - 12
IS  - 8
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.05/
DO  - 10.22436/jnsa.012.08.05
LA  - en
ID  - 10_22436_jnsa_012_08_05
ER  - 
%0 Journal Article
%A Al-Marzouki, Sanaa 
%T Truncated Weibull power Lomax distribution: statistical properties and applications
%J Journal of nonlinear sciences and its applications
%D 2019
%P 543-551
%V 12
%N 8
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.08.05/
%R 10.22436/jnsa.012.08.05
%G en
%F 10_22436_jnsa_012_08_05
Al-Marzouki, Sanaa . Truncated Weibull power Lomax distribution: statistical properties and applications. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 8, p. 543-551. doi: 10.22436/jnsa.012.08.05

[1] Abdul-Moniem, I. B.; Abdel-Hameed, H. F. On exponentiated Lomax distribution, Int. J. Math. Arch., Volume 3 (2012), pp. 2144-2150

[2] Almarashi, A. M.; Elgarhy, M. A new muth generated family of distributions with applications, J. Nonlinear Sci. Appl., Volume 11 (2018), pp. 1171-1184

[3] Cordeiro, G. M.; Ortega, E. M. M.; Popović, B. V. The gamma Lomax distribution, J. Stat. Comput. Simul., Volume 85 (2015), pp. 305-319 | Zbl | DOI

[4] Elbatal, I.; Ahmad, Z.; Elgarhy, M.; Almarashi, A. M. A New alpha power transformed family of distributions: properties and applications to the Weibull model, J. Nonlinear Sci. Appl., Volume 12 (2019), pp. 1-20

[5] Elgarhy, M.; Hassan, A. S.; Rashed, M. Garhy-generated family of distributions with application, Math. Theory Model., Volume 6 (2016), pp. 1-15

[6] Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications, Comm. Statist. Theory Methods, Volume 31 (2002), pp. 497-512 | DOI | Zbl

[7] Haq, M.; Elgarhy, M. The odd Fr\'echet-G family of probability distributions, J. Stat. Appl. Prob., Volume 7 (2018), pp. 185-201

[8] Hassan, A. S.; Elgarhy, M. A new family of exponentiated Weibull-generated distributions, Int. J. Math. Appl., Volume 4 (2016), pp. 135-148

[9] Hassan, A. S.; Elgarhy, M. Kumaraswamy Weibull-generated family of distributions with applications, Adv. Appl. Stat., Volume 48 (2016), pp. 205-239 | Zbl

[10] Hassan, A. S.; Elgarhy, M.; Shakil, M. Type II half Logistic family of distributions with applications, Pak. J. Stat. Oper. Res., Volume 13 (2017), pp. 245-264

[11] Najarzadegan, H.; Alamatsaz, M. H. ; Hayati, S. Truncated Weibull-G more flexible and more reliable than geta-G distribution, Int. J. Stat. Prob., Volume 6 (2017), pp. 1-17

[12] Rady, E. H. A.; Hassanein, W. A.; Elhaddad, T. A. The power Lomax distribution with an application to bladder cancer data, SpringerPlus, Volume 5 (2016), pp. 1-22 | DOI

[13] Tahir, M. H.; Cordeiro, G. M.; Mansoor, M.; Zubair, M. The Weibull-Lomax distribution: properties and applications, Hacet. J. Math. Stat., Volume 44 (2015), pp. 455-474 | Zbl

[14] Torabi, H.; Montazari, N. H. The logistic-uniform distribution and its application, Comm. Statist. Simulation Comput., Volume 43 (2014), pp. 2551-2569 | DOI

Cité par Sources :