Algorithms for Hammerstein inclusions in certain Banach spaces :
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 6, p. 387-404 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

Let $E$ be a reflexive smooth and strictly convex real Banach space. Let $F: E\rightarrow 2^{E^*}$ and $K: E^*\rightarrow E$ be bounded maximal monotone mappings such that $D(F)=E$ and $R(F)=D(K)=E^*$. Suppose that the Hammerstein inclusion $0\in u+KFu $ has a solution in $E$. We present in this paper a new algorithm for approximating solutions of the inclusion $0\in u+KFu $. Then we prove strong convergence theorems. Our theorems improve and unify most of the results that have been proved in this direction for this important class of nonlinear mappings. Furthermore, our technique of proof is of independent interest.

DOI : 10.22436/jnsa.012.06.05
Classification : 47H04, 47H06, 47H17, 47J25
Keywords: Hammerstein equation, monotone, iterative algorithm

Sene, Moustapha   1   ; Ndiaye, Mariama   1   ; Djitte, Ngalla   1

1 Gaston Berger University, Saint Louis, Senegal
@article{10_22436_jnsa_012_06_05,
     author = {Sene, Moustapha  and Ndiaye, Mariama  and Djitte, Ngalla },
     title = {Algorithms for {Hammerstein} inclusions in certain {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {387-404},
     year = {2019},
     volume = {12},
     number = {6},
     doi = {10.22436/jnsa.012.06.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.05/}
}
TY  - JOUR
AU  - Sene, Moustapha 
AU  - Ndiaye, Mariama 
AU  - Djitte, Ngalla 
TI  - Algorithms for Hammerstein inclusions in certain Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 387
EP  - 404
VL  - 12
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.05/
DO  - 10.22436/jnsa.012.06.05
LA  - en
ID  - 10_22436_jnsa_012_06_05
ER  - 
%0 Journal Article
%A Sene, Moustapha 
%A Ndiaye, Mariama 
%A Djitte, Ngalla 
%T Algorithms for Hammerstein inclusions in certain Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2019
%P 387-404
%V 12
%N 6
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.05/
%R 10.22436/jnsa.012.06.05
%G en
%F 10_22436_jnsa_012_06_05
Sene, Moustapha ; Ndiaye, Mariama ; Djitte, Ngalla . Algorithms for Hammerstein inclusions in certain Banach spaces. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 6, p. 387-404. doi: 10.22436/jnsa.012.06.05

[1] Ahmed, N. U. Nonlinear integral equations on reflexive Banach spaces with applications to stochastic integral equations and abstract evolution equations, J. Integral Eqns., Volume 1 (1979), pp. 1-15 | Zbl

[2] Alber, Y. Generalized Projection Operators in Banach space: Properties and Applications , Functional-differential equations, Volume 1993 (1993), pp. 1-21

[3] Y. Alber Metric and generalized Projection Operators in Banach space: properties and applications, in: Theory and applications of nonlinear operators of accretive and monotone type, Volume 1996 (1996), pp. 15-50

[4] Alber, Y.; Guerre-Delabiere, S. On the projection methods for fixed point problems, Analysis (Munich), Volume 21 (2001), pp. 17-39 | DOI

[5] Alber, Y.; Ryazantseva, I. Nonlinear ill-Posed Problems of Monotone Type, Springer, Dordrecht, 2006 | DOI

[6] Amann, H. Existence theorems for equations of Hammerstein type, Applicable Anal., Volume 2 (1972/73), pp. 385-397 | DOI

[7] Appell, J.; Pascale, E. De; Hguyen, H. T.; Zabrejko, P. P. Nonlinear integral inclusions of Hammerstein type, Topol. Methods Nonlinear Anal., Volume 5 (1995), pp. 111-124

[8] Aubin, J. P.; Cellina, A. Differential inclusions: set-valued maps and viability theory, Springer-Verlag, Berlin, 1984

[9] Aubin, J.-P.; Ekeland, I. Applied Nonlinear Analysis, John Wiley & Sons, New York, 1984

[10] Barbu, V. Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania, Bucharest, 1976

[11] Bauschke, H. H.; Matouskova, E.; Reich, S. Projection and proximal point methods: convergence results and counter examples, Nonlinear Anal., Volume 56 (2004), pp. 715-738 | DOI

[12] Berinde, V. Iterative approximation of fixed points, Springer, Berlin, 2007 | DOI

[13] Brezis, H.; Browder, F. E. Some new results about Hammerstein equations, Bull. Amer. Math. Soc., Volume 80 (1974), pp. 567-572 | DOI

[14] Brezis, H.; Browder, F. E. Existence theorems for nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., Volume 81 (1975), pp. 73-78 | DOI

[15] Brezis, H.; Browder, F. E. Nonlinear integral equations and systems of Hammerstein type, Advances in Math., Volume 18 (1975), pp. 115-147 | DOI

[16] Browder, F. E. Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 875-882 | DOI

[17] Browder, F. E. Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, in: Contributions to Nonlinear Functional Analysis, Volume 1971 (1971), pp. 425-500 | DOI | Zbl

[18] Browder, F. E.; Figueiredo, D. G. de; Gupta, C. P. Maximal monotone operators and a nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., Volume 76 (1970), pp. 700-705 | Zbl

[19] Browder, F. E.; Gupta, C. P. Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 1347-1353 | DOI

[20] Bruck, R. E. A strongly convergent iterative solution of \(0 \in U(x)\) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl., Volume 48 (1974), pp. 114-126 | DOI

[21] Chidume, C. Geometric Properties of Banach spaces and Nonlinear Iterations, Springer-Verlag, London, 2009 | Zbl | DOI

[22] Chidume, C. E.; A.U. Bello An iterative algorithm for approximating solutions of Hammerstein equations with monotone maps in Banach spaces, Appl. Math. Comput., Volume 313 (2017), pp. 408-417 | DOI

[23] Chidume, C. E.; N. Djitte Approximation of solutions of Hammerstein equations with bounded strongly accretive nonlinear operators, Nonlinear Anal., Volume 70 (2009), pp. 4071-4078 | DOI | Zbl

[24] Chidume, C. E.; Djitte, N. Iterative approximation of solutions of Nonlinear equations of Hammerstein type, Nonlinear Anal., Volume 70 (2009), pp. 4086-4092 | DOI

[25] Chidume, C. E.; Djitte, N. Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type, ISRN Math. Anal., Volume 2012 (2012), pp. 1-12

[26] Chidume, C. E.; Djitte, N. Convergence Theorems for Solutions of Hammerstein Equations with Accretive-Type Nonlinear Operators, PanAmer Math. J., Volume 22 (2012), pp. 19-29 | Zbl

[27] Chidume, C. E.; Djitte, N. An iterative method for solving nonlinear integral equations of Hammerstein type, Appl. Math. Comput., Volume 219 (2013), pp. 5613-5621 | DOI

[28] Chidume, C. E.; Ofoedu, E. U. Solution of nonlinear integral equations of Hammerstein type, Nonlinear Anal., Volume 74 (2011), pp. 4293-4299 | DOI

[29] Chidume, C. E.; M. O. Osilike Iterative solution of nonlinear integral equations of Hammerstein type, J. Nigerian Math. Soc., Volume 11 (1992), pp. 9-18

[30] Chidume, C. E.; Shehu, Y. Approximation of solutions of generalized equations of Hammerstein type, Comput. Math. Appl., Volume 63 (2012), pp. 966-974 | DOI

[31] Chidume, C. E.; Zegeye, H. Approximation of solutions of nonlinear equations of monotone and Hammerstein type , Appl. Anal., Volume 82 (2003), pp. 747-758 | DOI

[32] Chidume, C. E.; H. Zegeye Iterative approximation of solutions of nonlinear equations of Hammerstein type, Abstr. Appl. Anal., Volume 2003 (2003), pp. 353-365

[33] Chidume, C. E.; Zegeye, H. Approximation of solutions of nonlinear equations of Hammerstein type in Hilbert space, Proc. Amer. Math. Soc., Volume 133 (2005), pp. 851-858 | DOI

[34] Clarke, F. H. Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983

[35] Coffman, C. V. Variational theory of set-valued Hammerstein operators in Banach spaces: The eigenvalue problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 5 (1978), pp. 633-655 | Zbl

[36] Figueiredo, D. G. de; C. P. Gupta On the variational method for the existence of solutions to nonlinear equations of Hammerstein type, Proc. Amer. Math. Soc., Volume 40 (1973), pp. 470-476 | DOI

[37] Djitte, N.; Sene, M. Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type with Lipschitz and Bounded Nonlinear Operators, ISRN Appl. Math., Volume 2012 (2012), pp. 1-15 | Zbl

[38] Djitte, N.; Sene, M. An Iterative Algorithm for Approximating Solutions of Hammerstein Integral Equations, Numer. Funct. Anal. Optim., Volume 34 (2013), pp. 1299-1316 | Zbl | DOI

[39] Dolezale, V. Monotone operators and its applications in automation and network theory, Elsevier Science Publ., New York, 1979

[40] Glashoff, K.; Sprekels, J. An application of Glicksbergs theorem to set-valued integral equations arising in the theory of thermostats, SIAM J. Math. Anal., Volume 12 (1981), pp. 477-486 | DOI | Zbl

[41] Hammerstein, A. Nichtlineare integralgleichungen nebst anwendungen, (German) Acta Math., Volume 54 (1930), pp. 117-176 | DOI | Zbl

[42] Kamimura, S.; W. Takahashi Strong convergence of proximal-type algorithm in Banach space, SIAM J. Optim., Volume 13 (2002), pp. 938-945 | DOI

[43] Keller, J. B.; Olmstead, W. E. Temperature of nonlinearly radiating semi-infinite solid, Quart. Appl. Math., Volume 29 (1971/72), pp. 559-566 | Zbl | DOI

[44] Kohsaka, F.; W. Takahashi Strong convergence of an iterative sequence for maximal monotone operator in Banach space, Abstr. Appl. Anal., Volume 2004 (2004), pp. 239-349

[45] Lyapin, L. Hammerstein inclusions, Diff. Equations, Volume 10 (1976), pp. 638-643

[46] W. R. Mann Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510 | DOI

[47] Martinet, B. Regularization d’inequations variationelles par approximations successives , Revue Francaise d’informatique et de Recherche operationelle, Volume 4 (1970), pp. 154-159

[48] Ofoedu, E. U.; Onyi, C. E. New Implicit and explicit approximation methods for solutions of integral equations of Hammerstein type, Appl. Math. Comput., Volume 246 (2014), pp. 628-637 | DOI | Zbl

[49] Olmstead, W. E.; Handelsman, R. A. Diffusion in a semi-infinite region with nonlinear surface dissipation, SIAM Rev., Volume 18 (1976), pp. 275-291 | Zbl | DOI

[50] O’Regan, D. Integral equations in reflexive Banach spaces and weak topologies, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 607-614 | DOI

[51] O’Regan, D. Integral inclusions of upper semicontinuous or lower semicontinuous type, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 2391-2399

[52] Pascali, D.; Sburlan, S. Nonlinear mappings of monotone type, Martinus Nijhoff Publishers, Bucaresti, 1978

[53] S. Reich Constructive techniques for accretive and monotone operators, Appl. Nonlinear Anal., Volume 1978 (1979), pp. 335-345 | Zbl | DOI

[54] Reich, S. A weak convergence theorem for the alternating methods with Bergman distance, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Volume 1996 (1996), pp. 313-318

[55] Rockafellar, R. T. Monotone operator and the proximal point algorithm , SIAM J. Control Optimization, Volume 14 (1976), pp. 877-898 | DOI

[56] Xu, H.-K. Inequalities in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138 | DOI

[57] Xu, H.-K. Iterative algorithms for nonlinear operators, J. London Math. Soc., Volume 66 (2002), pp. 240-256 | DOI

Cité par Sources :