In this paper we discuss essential maps and the topological transversality theorem for maps admissible with respect to Gorniewicz.
Keywords: Essential maps, homotopy
O'Regan, Donal  1
@article{10_22436_jnsa_012_06_01,
author = {O'Regan, Donal},
title = {A note on the topological transversality theorem for the admissible maps of {Gorniewicz}},
journal = {Journal of nonlinear sciences and its applications},
pages = {345-348},
year = {2019},
volume = {12},
number = {6},
doi = {10.22436/jnsa.012.06.01},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.01/}
}
TY - JOUR AU - O'Regan, Donal TI - A note on the topological transversality theorem for the admissible maps of Gorniewicz JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 345 EP - 348 VL - 12 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.01/ DO - 10.22436/jnsa.012.06.01 LA - en ID - 10_22436_jnsa_012_06_01 ER -
%0 Journal Article %A O'Regan, Donal %T A note on the topological transversality theorem for the admissible maps of Gorniewicz %J Journal of nonlinear sciences and its applications %D 2019 %P 345-348 %V 12 %N 6 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.01/ %R 10.22436/jnsa.012.06.01 %G en %F 10_22436_jnsa_012_06_01
O'Regan, Donal. A note on the topological transversality theorem for the admissible maps of Gorniewicz. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 6, p. 345-348. doi: 10.22436/jnsa.012.06.01
[1] Continuation theorems for countably condensing maps, Nonlinear Funct. Anal. Appl., Volume 6 (2001), pp. 1-18 | Zbl
[2] A note on the topological transversality theorem for acyclic maps, Appl. Math. Lett., Volume 18 (2005), pp. 17-22 | DOI | Zbl
[3] Generalized topological essentiality and coincidence points of multivalued maps, Set-Valued Var. Anal., Volume 17 (2009), pp. 1-19 | Zbl | DOI
[4] Topological fixed point theory of multivalued mappings, Kluwer Academic Publishers, Dordrecht, 1999 | DOI
[5] Topological essentiality and differential inclusions, Bull. Austral. Math. Soc., Volume 45 (1992), pp. 177-193 | DOI
[6] Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris, Volume 282 (1976), pp. 983-985 | Zbl
[7] Topological and approximation methods of degree theory of set–valued maps, Dissertationes Math (Rozprawy Mat.), Volume 336 (1994), pp. 1-101
[8] Homotopy properties of set–valued mappings, Uniwersytet Mikoaja Kopernika, Torun, 1997
[9] Continuation methods based on essential and 0–epi maps, Acta Appl. Math., Volume 54 (1998), pp. 319-330 | Zbl | DOI
[10] Generalized coincidence theory for set–valued maps, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 855-864
[11] Topological transversality principles and general coincidence theory, An. Stiint. Univ. ”Ovidius” Constanta Ser. Mat., Volume 25 (2017), pp. 159-170 | Zbl | DOI
[12] On the topological transversality principle, Nonlinear Anal., Volume 20 (1993), pp. 1-9 | DOI
Cité par Sources :