A note on the topological transversality theorem for the admissible maps of Gorniewicz :
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 6, p. 345-348 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper we discuss essential maps and the topological transversality theorem for maps admissible with respect to Gorniewicz.

DOI : 10.22436/jnsa.012.06.01
Classification : 54H25, 55M20
Keywords: Essential maps, homotopy

O'Regan, Donal  1

1 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
@article{10_22436_jnsa_012_06_01,
     author = {O'Regan, Donal},
     title = {A note on the topological transversality theorem for the admissible maps of {Gorniewicz}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {345-348},
     year = {2019},
     volume = {12},
     number = {6},
     doi = {10.22436/jnsa.012.06.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.01/}
}
TY  - JOUR
AU  - O'Regan, Donal
TI  - A note on the topological transversality theorem for the admissible maps of Gorniewicz
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 345
EP  - 348
VL  - 12
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.01/
DO  - 10.22436/jnsa.012.06.01
LA  - en
ID  - 10_22436_jnsa_012_06_01
ER  - 
%0 Journal Article
%A O'Regan, Donal
%T A note on the topological transversality theorem for the admissible maps of Gorniewicz
%J Journal of nonlinear sciences and its applications
%D 2019
%P 345-348
%V 12
%N 6
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.06.01/
%R 10.22436/jnsa.012.06.01
%G en
%F 10_22436_jnsa_012_06_01
O'Regan, Donal. A note on the topological transversality theorem for the admissible maps of Gorniewicz. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 6, p. 345-348. doi: 10.22436/jnsa.012.06.01

[1] Agarwal, R. P.; O’Regan, D. Continuation theorems for countably condensing maps, Nonlinear Funct. Anal. Appl., Volume 6 (2001), pp. 1-18 | Zbl

[2] Agarwal, R. P.; O’Regan, D. A note on the topological transversality theorem for acyclic maps, Appl. Math. Lett., Volume 18 (2005), pp. 17-22 | DOI | Zbl

[3] Gabor, G.; Górniewicz, L.; Slosarski, M. Generalized topological essentiality and coincidence points of multivalued maps, Set-Valued Var. Anal., Volume 17 (2009), pp. 1-19 | Zbl | DOI

[4] Górniewicz, L. Topological fixed point theory of multivalued mappings, Kluwer Academic Publishers, Dordrecht, 1999 | DOI

[5] Górniewicz, L.; M. Slosarski Topological essentiality and differential inclusions, Bull. Austral. Math. Soc., Volume 45 (1992), pp. 177-193 | DOI

[6] Granas, A. Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris, Volume 282 (1976), pp. 983-985 | Zbl

[7] Kryszewski, W. Topological and approximation methods of degree theory of set–valued maps, Dissertationes Math (Rozprawy Mat.), Volume 336 (1994), pp. 1-101

[8] Kryszewski, W. Homotopy properties of set–valued mappings, Uniwersytet Mikoaja Kopernika, Torun, 1997

[9] O’Regan, D. Continuation methods based on essential and 0–epi maps, Acta Appl. Math., Volume 54 (1998), pp. 319-330 | Zbl | DOI

[10] O’Regan, D. Generalized coincidence theory for set–valued maps, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 855-864

[11] O’Regan, D. Topological transversality principles and general coincidence theory, An. Stiint. Univ. ”Ovidius” Constanta Ser. Mat., Volume 25 (2017), pp. 159-170 | Zbl | DOI

[12] Precup, R. On the topological transversality principle, Nonlinear Anal., Volume 20 (1993), pp. 1-9 | DOI

Cité par Sources :