On a $q$-analogue of the Hilbert's type inequality :
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1243-1249 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper, by introducing a parameter $q$ and using the expression of the beta function establishing the inequality of the weight coefficient, we give a $q$-analogue of the Hilbert's type inequality. As applications, a generalization of Hardy-Hilbert's inequality are obtained.

DOI : 10.22436/jnsa.011.11.04
Classification : 05A30, 26D15
Keywords: \(q\)-Analogue, Hilbert's type inequality, weight coefficient, Holder inequality, generalization

Zhang, Zhengping   1   ; Xi, Gaowen   1

1 College of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
@article{10_22436_jnsa_011_11_04,
     author = {Zhang, Zhengping  and Xi, Gaowen },
     title = {On a \(q\)-analogue of the {Hilbert's} type inequality},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1243-1249},
     year = {2018},
     volume = {11},
     number = {11},
     doi = {10.22436/jnsa.011.11.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.04/}
}
TY  - JOUR
AU  - Zhang, Zhengping 
AU  - Xi, Gaowen 
TI  - On a \(q\)-analogue of the Hilbert's type inequality
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1243
EP  - 1249
VL  - 11
IS  - 11
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.04/
DO  - 10.22436/jnsa.011.11.04
LA  - en
ID  - 10_22436_jnsa_011_11_04
ER  - 
%0 Journal Article
%A Zhang, Zhengping 
%A Xi, Gaowen 
%T On a \(q\)-analogue of the Hilbert's type inequality
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1243-1249
%V 11
%N 11
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.04/
%R 10.22436/jnsa.011.11.04
%G en
%F 10_22436_jnsa_011_11_04
Zhang, Zhengping ; Xi, Gaowen . On a \(q\)-analogue of the Hilbert's type inequality. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1243-1249. doi: 10.22436/jnsa.011.11.04

[1] Gasper, G.; M. Rahman Basic Hypergeometric Series, Cambrideg University Press, Cambrideg, 1990

[2] Hardy, G. H.; Littlewood, J. E.; Polya, G. Inequalities, Cambrideg University Press, Cambridge, 1934

[3] Jichang, K.; Debnath, L. On new generalizations of Hilbert’s inequality and their applications, J. Math. Anal. Appl., Volume 245 (2000), pp. 248-265 | DOI | Zbl

[4] Knopp, K. Theory and application of infinite series , Blackie & Son Limited, London, 1928

[5] Krnic, M.; Pecaric, J. General Hilbert’s and Hardy’s inequalities, Math. Inequal. Appl., Volume 8 (2005), pp. 29-51

[6] Thomae, J. Beiträge zur Theorie der durch die Heinesche Reihe: darstellbaren Functionen, J. Reine Angew. Math., Volume 70 (1869), pp. 258-281 | EuDML | DOI

[7] Thomae, J. Les séries Heinéennes supérieures, ou les séries de la forme, Annali di Matematica Pura ed Applicata, Volume 4 (1870), pp. 105-138

[8] G. W. Xi On generalizations and reinforcements of a Hilbert’s type inequality, Rocky Mountain J. Math., Volume 42 (2012), pp. 329-337 | Zbl

[9] G. W. Xi A generalization of the Hilbert’s type inequality, Math. Inequal. Appl., Volume 18 (2015), pp. 1501-1510 | Zbl

[10] Yang, B. C. A new Hilbert-type inequality, Bull. Belg. Math. Soc. Simon Stevin, Volume 13 (2006), pp. 479-487 | Zbl

[11] Yang, B. C. On a Strengthened version of the more accurate Hardy-Hilbert’s inequality, Acta. Math. Sinica, Volume 42 (1999), pp. 1103-1110

[12] Yang, B. C. On best extensions of Hardy-Hilbert’s inequality with two parameters, JIPAM. J. Inequal. Pure Appl. Math., Volume 6 (2005), pp. 1-15 | Zbl

[13] Yang, B. C.; Zhu, Y. Inequality on the Hurwitz Zeta-function restricted to the axis of positive reals, Acta Scientiarum Naturalium Universitatis Sunyatseni, Volume 36 (1997), pp. 30-35

Cité par Sources :