In this paper, by introducing a parameter $q$ and using the expression of the beta function establishing the inequality of the weight coefficient, we give a $q$-analogue of the Hilbert's type inequality. As applications, a generalization of Hardy-Hilbert's inequality are obtained.
Keywords: \(q\)-Analogue, Hilbert's type inequality, weight coefficient, Holder inequality, generalization
Zhang, Zhengping   1 ; Xi, Gaowen   1
@article{10_22436_jnsa_011_11_04,
author = {Zhang, Zhengping and Xi, Gaowen },
title = {On a \(q\)-analogue of the {Hilbert's} type inequality},
journal = {Journal of nonlinear sciences and its applications},
pages = {1243-1249},
year = {2018},
volume = {11},
number = {11},
doi = {10.22436/jnsa.011.11.04},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.04/}
}
TY - JOUR AU - Zhang, Zhengping AU - Xi, Gaowen TI - On a \(q\)-analogue of the Hilbert's type inequality JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1243 EP - 1249 VL - 11 IS - 11 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.04/ DO - 10.22436/jnsa.011.11.04 LA - en ID - 10_22436_jnsa_011_11_04 ER -
%0 Journal Article %A Zhang, Zhengping %A Xi, Gaowen %T On a \(q\)-analogue of the Hilbert's type inequality %J Journal of nonlinear sciences and its applications %D 2018 %P 1243-1249 %V 11 %N 11 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.11.04/ %R 10.22436/jnsa.011.11.04 %G en %F 10_22436_jnsa_011_11_04
Zhang, Zhengping ; Xi, Gaowen . On a \(q\)-analogue of the Hilbert's type inequality. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 11, p. 1243-1249. doi: 10.22436/jnsa.011.11.04
[1] Basic Hypergeometric Series, Cambrideg University Press, Cambrideg, 1990
[2] Inequalities, Cambrideg University Press, Cambridge, 1934
[3] On new generalizations of Hilbert’s inequality and their applications, J. Math. Anal. Appl., Volume 245 (2000), pp. 248-265 | DOI | Zbl
[4] Theory and application of infinite series , Blackie & Son Limited, London, 1928
[5] General Hilbert’s and Hardy’s inequalities, Math. Inequal. Appl., Volume 8 (2005), pp. 29-51
[6] Beiträge zur Theorie der durch die Heinesche Reihe: darstellbaren Functionen, J. Reine Angew. Math., Volume 70 (1869), pp. 258-281 | EuDML | DOI
[7] Les séries Heinéennes supérieures, ou les séries de la forme, Annali di Matematica Pura ed Applicata, Volume 4 (1870), pp. 105-138
[8] On generalizations and reinforcements of a Hilbert’s type inequality, Rocky Mountain J. Math., Volume 42 (2012), pp. 329-337 | Zbl
[9] A generalization of the Hilbert’s type inequality, Math. Inequal. Appl., Volume 18 (2015), pp. 1501-1510 | Zbl
[10] A new Hilbert-type inequality, Bull. Belg. Math. Soc. Simon Stevin, Volume 13 (2006), pp. 479-487 | Zbl
[11] On a Strengthened version of the more accurate Hardy-Hilbert’s inequality, Acta. Math. Sinica, Volume 42 (1999), pp. 1103-1110
[12] On best extensions of Hardy-Hilbert’s inequality with two parameters, JIPAM. J. Inequal. Pure Appl. Math., Volume 6 (2005), pp. 1-15 | Zbl
[13] Inequality on the Hurwitz Zeta-function restricted to the axis of positive reals, Acta Scientiarum Naturalium Universitatis Sunyatseni, Volume 36 (1997), pp. 30-35
Cité par Sources :