New oscillation criteria for third order noncanonical differential equations of the form
| $ \left(r_2(t)\left(r_1(t)y'(t)\right)'\right)'+p(t)y(\tau(t))=0 $ |
Keywords: Oscillation, third order differential equations, noncanonical operator
Baculikova, Blanka   1
@article{10_22436_jnsa_011_10_02,
author = {Baculikova, Blanka },
title = {Oscillation of strongly noncanonical equations},
journal = {Journal of nonlinear sciences and its applications},
pages = {1124-1128},
year = {2018},
volume = {11},
number = {10},
doi = {10.22436/jnsa.011.10.02},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.02/}
}
TY - JOUR AU - Baculikova, Blanka TI - Oscillation of strongly noncanonical equations JO - Journal of nonlinear sciences and its applications PY - 2018 SP - 1124 EP - 1128 VL - 11 IS - 10 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.02/ DO - 10.22436/jnsa.011.10.02 LA - en ID - 10_22436_jnsa_011_10_02 ER -
%0 Journal Article %A Baculikova, Blanka %T Oscillation of strongly noncanonical equations %J Journal of nonlinear sciences and its applications %D 2018 %P 1124-1128 %V 11 %N 10 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.02/ %R 10.22436/jnsa.011.10.02 %G en %F 10_22436_jnsa_011_10_02
Baculikova, Blanka . Oscillation of strongly noncanonical equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1124-1128. doi: 10.22436/jnsa.011.10.02
[1] Comparison theorems for nonlinear ODE’s, Math. Slovaca, Volume 42 (1992), pp. 299-315 | Zbl
[2] Disconjugate n-th order linear differential equations and principal solutions, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 125-129 | DOI
[3] Principal solutions of disconjugate n-th order linear differential equations, Amer. J. Math., Volume 91 (1969), pp. 306-362 | DOI
[4] Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993 | DOI
[5] Comparison theorems for functional differential equations with deviating arguments, J. Math. Soc. Japan, Volume 33 (1981), pp. 509-532 | Zbl | DOI
[6] Non-oscillation of solutions of the equation \(x^{(n) }+ p_1(t)x^{(n-1)} +... + p_n(t)x = 0\), Uspekhi Mat. Nauk, Volume 24 (1969), pp. 43-49
[7] Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987
[8] On the mean-value theorem corresponding to a given linear homogeneous differential equations, Trans. Amer. Math. Soc., Volume 24 (1922), pp. 312-324 | DOI
[9] Canonical forms and principal systems for general disconjugate equations, Trans. Amer. Math. Soc., Volume 184 (1974), pp. 319-327 | Zbl | DOI
[10] Asymptotic behaviour of disconjugate n-th order differential equations, Canad. J. Math., Volume 23 (1971), pp. 293-314
Cité par Sources :