Oscillation of strongly noncanonical equations :
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1124-1128 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

New oscillation criteria for third order noncanonical differential equations of the form

$ \left(r_2(t)\left(r_1(t)y'(t)\right)'\right)'+p(t)y(\tau(t))=0 $

are established. Our technique employs an equivalent canonical representation of the studied equation, which essentially simplifies the examination of noncanonical equations. The results obtained are supported by several illustrative examples.

DOI : 10.22436/jnsa.011.10.02
Classification : 34C10, 34K11
Keywords: Oscillation, third order differential equations, noncanonical operator

Baculikova, Blanka   1

1 Department of Mathematics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
@article{10_22436_jnsa_011_10_02,
     author = {Baculikova, Blanka },
     title = {Oscillation of strongly noncanonical equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1124-1128},
     year = {2018},
     volume = {11},
     number = {10},
     doi = {10.22436/jnsa.011.10.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.02/}
}
TY  - JOUR
AU  - Baculikova, Blanka 
TI  - Oscillation of strongly noncanonical equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 1124
EP  - 1128
VL  - 11
IS  - 10
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.02/
DO  - 10.22436/jnsa.011.10.02
LA  - en
ID  - 10_22436_jnsa_011_10_02
ER  - 
%0 Journal Article
%A Baculikova, Blanka 
%T Oscillation of strongly noncanonical equations
%J Journal of nonlinear sciences and its applications
%D 2018
%P 1124-1128
%V 11
%N 10
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.10.02/
%R 10.22436/jnsa.011.10.02
%G en
%F 10_22436_jnsa_011_10_02
Baculikova, Blanka . Oscillation of strongly noncanonical equations. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 10, p. 1124-1128. doi: 10.22436/jnsa.011.10.02

[1] Džurina, J. Comparison theorems for nonlinear ODE’s, Math. Slovaca, Volume 42 (1992), pp. 299-315 | Zbl

[2] Hartman, P. Disconjugate n-th order linear differential equations and principal solutions, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 125-129 | DOI

[3] Hartman, P. Principal solutions of disconjugate n-th order linear differential equations, Amer. J. Math., Volume 91 (1969), pp. 306-362 | DOI

[4] Kiguradze, I. T.; T. A. Chanturia Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993 | DOI

[5] Kusano, T.; Naito, M. Comparison theorems for functional differential equations with deviating arguments, J. Math. Soc. Japan, Volume 33 (1981), pp. 509-532 | Zbl | DOI

[6] A. Y. Levin Non-oscillation of solutions of the equation \(x^{(n) }+ p_1(t)x^{(n-1)} +... + p_n(t)x = 0\), Uspekhi Mat. Nauk, Volume 24 (1969), pp. 43-49

[7] Ladde, G. S.; Lakshmikantham, V.; Zhang, B. G. Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987

[8] Pólya, G. On the mean-value theorem corresponding to a given linear homogeneous differential equations, Trans. Amer. Math. Soc., Volume 24 (1922), pp. 312-324 | DOI

[9] Trench, W. F. Canonical forms and principal systems for general disconjugate equations, Trans. Amer. Math. Soc., Volume 184 (1974), pp. 319-327 | Zbl | DOI

[10] Willett, D. Asymptotic behaviour of disconjugate n-th order differential equations, Canad. J. Math., Volume 23 (1971), pp. 293-314

Cité par Sources :