A generalization of Elsayed's solution to the difference equation $x_{n+1}=\frac{ x_{n-5}}{-1 + x_{n-2}x_{n-5}}$ :
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 613-623 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper, we obtain solutions to difference equations of the form

$ x_{n+1}=\frac{ x_{n-5}}{a_n+b_n x_{n-2}x_{n-5}},$

where $(a_{n})$ and $(b_{n})$ are sequences of real numbers. Consequently, a result of Elsayed is generalized. To achieve this, we use Lie symmetry analysis.

DOI : 10.22436/jnsa.011.05.03
Classification : 76M60, 39A05, 39A11
Keywords: Difference equation, symmetry, reduction, group invariant

Folly-Gbetoula, Mensah   1   ; Nyirenda, Darlison   1

1 School of Mathematics, University of the Witwatersrand, 2050, Johannesburg, South Africa
@article{10_22436_jnsa_011_05_03,
     author = {Folly-Gbetoula, Mensah  and Nyirenda, Darlison },
     title = {A generalization of {Elsayed's} solution to the difference equation \(x_{n+1}=\frac{ x_{n-5}}{-1 + x_{n-2}x_{n-5}}\)},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {613-623},
     year = {2018},
     volume = {11},
     number = {5},
     doi = {10.22436/jnsa.011.05.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.03/}
}
TY  - JOUR
AU  - Folly-Gbetoula, Mensah 
AU  - Nyirenda, Darlison 
TI  - A generalization of Elsayed's solution to the difference equation \(x_{n+1}=\frac{ x_{n-5}}{-1 + x_{n-2}x_{n-5}}\)
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 613
EP  - 623
VL  - 11
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.03/
DO  - 10.22436/jnsa.011.05.03
LA  - en
ID  - 10_22436_jnsa_011_05_03
ER  - 
%0 Journal Article
%A Folly-Gbetoula, Mensah 
%A Nyirenda, Darlison 
%T A generalization of Elsayed's solution to the difference equation \(x_{n+1}=\frac{ x_{n-5}}{-1 + x_{n-2}x_{n-5}}\)
%J Journal of nonlinear sciences and its applications
%D 2018
%P 613-623
%V 11
%N 5
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.03/
%R 10.22436/jnsa.011.05.03
%G en
%F 10_22436_jnsa_011_05_03
Folly-Gbetoula, Mensah ; Nyirenda, Darlison . A generalization of Elsayed's solution to the difference equation \(x_{n+1}=\frac{ x_{n-5}}{-1 + x_{n-2}x_{n-5}}\). Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 613-623. doi: 10.22436/jnsa.011.05.03

[1] Aloqeili, M. Dynamics of a rational difference equation, Appl. Math. Comput., Volume 176 (2006), pp. 768-774 | DOI

[2] C. Çinar On the positive solutions of the difference equation \(x_{n+1} = x_{n-1}/(1 + ax_nx_{n-1})\), Appl. Math Comput., Volume 158 (2004), pp. 809-812 | DOI

[3] Elsayed, E. M. On the difference equation \(x_{n+1} =\frac{ x_{n-5}}{ -1+x_{n-2}x_{n-5}}\), Int. J. Contemp. Math. Sci., Volume 3 (2008), pp. 1657-1664

[4] E. M. Elsayed On the solution of some difference equation, Eur. J. Pure Appl. Math., Volume 4 (2011), pp. 287-303

[5] M. Folly-Gbetoula Symmetry, reductions and exact solutions of the difference equation \(u_{n+2} = au_n/(1+bu_nu_{n+1})\) , J. Difference Equ. Appl., Volume 23 (2017), pp. 1017-1024 | DOI | Zbl

[6] Folly-Gbetoula, M.; Kara, A. H. Symmetries, conservation laws, and integrability of difference equations, Adv. Difference Equ., Volume 2014 (2014), pp. 1-14 | DOI

[7] Folly-Gbetoula, M.; Kara, A. H. Invariance analysis and reduction of discrete Painlevé equations , J. Difference Equ. Appl., Volume 22 (2016), pp. 1378-1388 | Zbl | DOI

[8] P. E. Hydon Difference Equations by Differential Equation Methods, Cambridge University Press, Cambridge, 2014 | DOI

[9] Ibrahim, T. F. On the third order rational difference equation \(x_{n+1} = x_nx_{n-2}/x_{n-1}(a + bx_nx_{n-2})\), Int. J. Contemp. Math. Sci., Volume 4 (2009), pp. 1321-1334

[10] Levi, D.; Vinet, L.; P. Winternitz Lie group formalism for difference equations, J. Phys. A, Volume 30 (1997), pp. 633-649 | DOI

[11] Quispel, G. R. W.; Sahadevan, R. Lie symmetries and the integration of difference equations, Phys. Lett. A, Volume 184 (1993), pp. 64-70 | DOI

[12] I. Yalçinkaya On the global attractivity of positive solutions of a rational difference equation , Selçuk J. Appl. Math., Volume 9 (2008), pp. 3-8

Cité par Sources :