In this paper, we obtain solutions to difference equations of the form
| $ x_{n+1}=\frac{ x_{n-5}}{a_n+b_n x_{n-2}x_{n-5}},$ |
Keywords: Difference equation, symmetry, reduction, group invariant
Folly-Gbetoula, Mensah   1 ; Nyirenda, Darlison   1
@article{10_22436_jnsa_011_05_03,
author = {Folly-Gbetoula, Mensah and Nyirenda, Darlison },
title = {A generalization of {Elsayed's} solution to the difference equation \(x_{n+1}=\frac{ x_{n-5}}{-1 + x_{n-2}x_{n-5}}\)},
journal = {Journal of nonlinear sciences and its applications},
pages = {613-623},
year = {2018},
volume = {11},
number = {5},
doi = {10.22436/jnsa.011.05.03},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.03/}
}
TY - JOUR
AU - Folly-Gbetoula, Mensah
AU - Nyirenda, Darlison
TI - A generalization of Elsayed's solution to the difference equation \(x_{n+1}=\frac{ x_{n-5}}{-1 + x_{n-2}x_{n-5}}\)
JO - Journal of nonlinear sciences and its applications
PY - 2018
SP - 613
EP - 623
VL - 11
IS - 5
UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.03/
DO - 10.22436/jnsa.011.05.03
LA - en
ID - 10_22436_jnsa_011_05_03
ER -
%0 Journal Article
%A Folly-Gbetoula, Mensah
%A Nyirenda, Darlison
%T A generalization of Elsayed's solution to the difference equation \(x_{n+1}=\frac{ x_{n-5}}{-1 + x_{n-2}x_{n-5}}\)
%J Journal of nonlinear sciences and its applications
%D 2018
%P 613-623
%V 11
%N 5
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.05.03/
%R 10.22436/jnsa.011.05.03
%G en
%F 10_22436_jnsa_011_05_03
Folly-Gbetoula, Mensah ; Nyirenda, Darlison . A generalization of Elsayed's solution to the difference equation \(x_{n+1}=\frac{ x_{n-5}}{-1 + x_{n-2}x_{n-5}}\). Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 5, p. 613-623. doi: 10.22436/jnsa.011.05.03
[1] Dynamics of a rational difference equation, Appl. Math. Comput., Volume 176 (2006), pp. 768-774 | DOI
[2] On the positive solutions of the difference equation \(x_{n+1} = x_{n-1}/(1 + ax_nx_{n-1})\), Appl. Math Comput., Volume 158 (2004), pp. 809-812 | DOI
[3] On the difference equation \(x_{n+1} =\frac{ x_{n-5}}{ -1+x_{n-2}x_{n-5}}\), Int. J. Contemp. Math. Sci., Volume 3 (2008), pp. 1657-1664
[4] On the solution of some difference equation, Eur. J. Pure Appl. Math., Volume 4 (2011), pp. 287-303
[5] Symmetry, reductions and exact solutions of the difference equation \(u_{n+2} = au_n/(1+bu_nu_{n+1})\) , J. Difference Equ. Appl., Volume 23 (2017), pp. 1017-1024 | DOI | Zbl
[6] Symmetries, conservation laws, and integrability of difference equations, Adv. Difference Equ., Volume 2014 (2014), pp. 1-14 | DOI
[7] Invariance analysis and reduction of discrete Painlevé equations , J. Difference Equ. Appl., Volume 22 (2016), pp. 1378-1388 | Zbl | DOI
[8] Difference Equations by Differential Equation Methods, Cambridge University Press, Cambridge, 2014 | DOI
[9] On the third order rational difference equation \(x_{n+1} = x_nx_{n-2}/x_{n-1}(a + bx_nx_{n-2})\), Int. J. Contemp. Math. Sci., Volume 4 (2009), pp. 1321-1334
[10] Lie group formalism for difference equations, J. Phys. A, Volume 30 (1997), pp. 633-649 | DOI
[11] Lie symmetries and the integration of difference equations, Phys. Lett. A, Volume 184 (1993), pp. 64-70 | DOI
[12] On the global attractivity of positive solutions of a rational difference equation , Selçuk J. Appl. Math., Volume 9 (2008), pp. 3-8
Cité par Sources :