Dynamics of the fuzzy difference equation $z_n =\max\{\frac{ 1}{ z_{n-m}} , \frac{\alpha_n }{z_{n-r} }\}$ :
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 477-485 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper, we study the eventual periodicity of the following fuzzy max-type difference equation

$z_n=\max\{\frac{1}{z_{n-m}},\frac{\alpha_n}{z_{n-r}}\},\ \ n=0,1,\ldots,$

where $\{\alpha_n\}_{n\geq 0}$ is a periodic sequence of positive fuzzy numbers and the initial values $z_{-d},z_{-d+1},\ldots,z_{-1}$ are positive fuzzy numbers with $d=\max\{m,r\}$. We show that if $\max(\mbox{supp}\ \alpha_n)1$, then every positive solution of this equation is eventually periodic with period $2m$.

DOI : 10.22436/jnsa.011.04.04
Classification : 39A10, 39A11
Keywords: Fuzzy max-type difference equation, positive solution, eventual periodicity

Sun, Taixiang   1   ; Xi, Hongjian   1   ; Su, Guangwang   1   ; Qin, Bin   1

1 Guangxi Key Laboratory Cultivation Base of Cross-border E-commerce Intelligent Information Processing, Guangxi Univresity of Finance and Economics, Nanning, 530003, China
@article{10_22436_jnsa_011_04_04,
     author = {Sun, Taixiang  and Xi, Hongjian  and Su, Guangwang  and Qin, Bin },
     title = {Dynamics of the fuzzy difference equation \(z_n =\max\{\frac{ 1}{ z_{n-m}} , \frac{\alpha_n }{z_{n-r} }\}\)},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {477-485},
     year = {2018},
     volume = {11},
     number = {4},
     doi = {10.22436/jnsa.011.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.04/}
}
TY  - JOUR
AU  - Sun, Taixiang 
AU  - Xi, Hongjian 
AU  - Su, Guangwang 
AU  - Qin, Bin 
TI  - Dynamics of the fuzzy difference equation \(z_n =\max\{\frac{ 1}{ z_{n-m}} , \frac{\alpha_n }{z_{n-r} }\}\)
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 477
EP  - 485
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.04/
DO  - 10.22436/jnsa.011.04.04
LA  - en
ID  - 10_22436_jnsa_011_04_04
ER  - 
%0 Journal Article
%A Sun, Taixiang 
%A Xi, Hongjian 
%A Su, Guangwang 
%A Qin, Bin 
%T Dynamics of the fuzzy difference equation \(z_n =\max\{\frac{ 1}{ z_{n-m}} , \frac{\alpha_n }{z_{n-r} }\}\)
%J Journal of nonlinear sciences and its applications
%D 2018
%P 477-485
%V 11
%N 4
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.04/
%R 10.22436/jnsa.011.04.04
%G en
%F 10_22436_jnsa_011_04_04
Sun, Taixiang ; Xi, Hongjian ; Su, Guangwang ; Qin, Bin . Dynamics of the fuzzy difference equation \(z_n =\max\{\frac{ 1}{ z_{n-m}} , \frac{\alpha_n }{z_{n-r} }\}\). Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 477-485. doi: 10.22436/jnsa.011.04.04

[1] Chrysafis, K. A.; Papadopoulos, B. K.; G. Papaschinopoulos On the fuzzy difference equations of finance , Fuzzy Sets and Systems, Volume 159 (2008), pp. 3259-3270 | DOI

[2] Hatir, E.; Mansour, T.; Yalçinkaya, I. On a fuzzy difference equation, Util. Math., Volume 93 (2014), pp. 135-151

[3] He, Q.; Tao, C.; Sun, T.; Liu, X.; Su, D. Periodicity of the positive solutions of a fuzzy max-difference equation, Abstr. Appl. Anal., Volume 2014 (2014 ), pp. 1-4

[4] Horčík, R. Solution of a system of linear equations with fuzzy numbers, Fuzzy Sets and Systems, Volume 159 (2008), pp. 1788-1810 | DOI

[5] Kargar, R.; Allahviranloo, T.; Rostami-Malkhalifeh, M.; Jahanshaloo, G. R. A proposed method for solving fuzzy system of linear equations, Sci. World J., Volume 2014 (2014 ), pp. 1-6

[6] Klir, G. J.; B. Yuan Fuzzy sets and fuzzy logic, Prentice-Hall PTR, New Jersey, 1995

[7] Lakshmikantham, V.; Vatsala, A. S. Basic theory of fuzzy difference equations, J. Difference Equ. Appl., Volume 8 (2002), pp. 957-968 | DOI

[8] Nguyen, H. T.; Walker, E. A. A first course in fuzzy logic, CRC Press, Florida, 1997

[9] Papaschinopoulos, G.; B. K. Papadopoulos On the fuzzy difference equation \(x_{n+1} = A + x_n/x_{n-m}\), Fuzzy Sets and Systems, Volume 129 (2002), pp. 73-81 | DOI | Zbl

[10] Papaschinopoulos, G.; B. K. Papadopoulos On the fuzzy difference equation \(x_{n+1} = A + B/x_n\), Soft Comput., Volume 6 (2002), pp. 456-461 | DOI | Zbl

[11] Papaschinopoulos, G.; Stefanidou, G. Boundedness and asymptotic behavior of the solutions of a fuzzy difference equation, Fuzzy Sets and Systems, Volume 140 (2003), pp. 523-539 | DOI

[12] Stefanidou, G.; G. Papaschinopoulos A fuzzy difference equation of a rational form, J. Nonlinear Math. Phys., Volume 12 (2005), pp. 300-315 | DOI | Zbl

[13] Stefanidou, G.; G. Papaschinopoulos Behavior of the positive solutions of fuzzy max- difference equations, Adv. Difference Equ., Volume 2005 (2005), pp. 153-172 | Zbl | DOI

[14] Stefanidou, G.; G. Papaschinopoulos The periodic nature of the positive solutions of a nonlinear fuzzy max-difference equation, Inform. Sci., Volume 176 (2006), pp. 3694-3710 | DOI | Zbl

[15] Stefanidou, G.; Papaschinopoulos, G.; Schinas, C. J. On an exponential-type fuzzy difference equation, Adv. Difference Equ., Volume 2010 (2010), pp. 1-19 | DOI | Zbl

[16] Wu, C.; Zhang, B. Embedding problem of noncompact fuzzy number space E~(I), Fuzzy Sets and Systems, Volume 105 (1999), pp. 165-169 | DOI | Zbl

[17] Zhang, Q. H.; J. Liu The first order fuzzy difference equation \(x_{n+1} = Ax_n + B\) , (Chinese), Mohu Xitong yu Shuxue, Volume 23 (2009), pp. 74-79 | Zbl

[18] Zhang, Q. H.; Liu, J.; Luo, Z. Dynamical behavior of a third-order rational fuzzy difference equation, Adv. Difference Equ., Volume 2015 (2015), pp. 1-18 | Zbl | DOI

[19] Zhang, Q. H.; Yang, L.; D. Liao On the fuzzy difference equation \(x_{n+1} = A + \sum^k_{i =0} B/x_{n-i }\), International J. Math. Comput. Phys. Elect. Comput. Eng., Volume 5 (2011), pp. 490-495

[20] Zhang, Q. H.; Yang, L.; Liao, D. Behavior of solutions to a fuzzy nonlinear difference equation, Iran J. Fuzzy Sys., Volume 9 (2012), pp. 1-12 | Zbl

[21] Zhang, Q. H.; Yang, L.; D. Liao On first order fuzzy Ricatti difference equation, Inform. Sci., Volume 270 (2014), pp. 226-236 | DOI

Cité par Sources :