In this paper, we study the eventual periodicity of the following fuzzy max-type difference equation
| $z_n=\max\{\frac{1}{z_{n-m}},\frac{\alpha_n}{z_{n-r}}\},\ \ n=0,1,\ldots,$ |
Keywords: Fuzzy max-type difference equation, positive solution, eventual periodicity
Sun, Taixiang   1 ; Xi, Hongjian   1 ; Su, Guangwang   1 ; Qin, Bin   1
@article{10_22436_jnsa_011_04_04,
author = {Sun, Taixiang and Xi, Hongjian and Su, Guangwang and Qin, Bin },
title = {Dynamics of the fuzzy difference equation \(z_n =\max\{\frac{ 1}{ z_{n-m}} , \frac{\alpha_n }{z_{n-r} }\}\)},
journal = {Journal of nonlinear sciences and its applications},
pages = {477-485},
year = {2018},
volume = {11},
number = {4},
doi = {10.22436/jnsa.011.04.04},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.04/}
}
TY - JOUR
AU - Sun, Taixiang
AU - Xi, Hongjian
AU - Su, Guangwang
AU - Qin, Bin
TI - Dynamics of the fuzzy difference equation \(z_n =\max\{\frac{ 1}{ z_{n-m}} , \frac{\alpha_n }{z_{n-r} }\}\)
JO - Journal of nonlinear sciences and its applications
PY - 2018
SP - 477
EP - 485
VL - 11
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.04/
DO - 10.22436/jnsa.011.04.04
LA - en
ID - 10_22436_jnsa_011_04_04
ER -
%0 Journal Article
%A Sun, Taixiang
%A Xi, Hongjian
%A Su, Guangwang
%A Qin, Bin
%T Dynamics of the fuzzy difference equation \(z_n =\max\{\frac{ 1}{ z_{n-m}} , \frac{\alpha_n }{z_{n-r} }\}\)
%J Journal of nonlinear sciences and its applications
%D 2018
%P 477-485
%V 11
%N 4
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.04/
%R 10.22436/jnsa.011.04.04
%G en
%F 10_22436_jnsa_011_04_04
Sun, Taixiang ; Xi, Hongjian ; Su, Guangwang ; Qin, Bin . Dynamics of the fuzzy difference equation \(z_n =\max\{\frac{ 1}{ z_{n-m}} , \frac{\alpha_n }{z_{n-r} }\}\). Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 477-485. doi: 10.22436/jnsa.011.04.04
[1] On the fuzzy difference equations of finance , Fuzzy Sets and Systems, Volume 159 (2008), pp. 3259-3270 | DOI
[2] On a fuzzy difference equation, Util. Math., Volume 93 (2014), pp. 135-151
[3] Periodicity of the positive solutions of a fuzzy max-difference equation, Abstr. Appl. Anal., Volume 2014 (2014 ), pp. 1-4
[4] Solution of a system of linear equations with fuzzy numbers, Fuzzy Sets and Systems, Volume 159 (2008), pp. 1788-1810 | DOI
[5] A proposed method for solving fuzzy system of linear equations, Sci. World J., Volume 2014 (2014 ), pp. 1-6
[6] Fuzzy sets and fuzzy logic, Prentice-Hall PTR, New Jersey, 1995
[7] Basic theory of fuzzy difference equations, J. Difference Equ. Appl., Volume 8 (2002), pp. 957-968 | DOI
[8] A first course in fuzzy logic, CRC Press, Florida, 1997
[9] On the fuzzy difference equation \(x_{n+1} = A + x_n/x_{n-m}\), Fuzzy Sets and Systems, Volume 129 (2002), pp. 73-81 | DOI | Zbl
[10] On the fuzzy difference equation \(x_{n+1} = A + B/x_n\), Soft Comput., Volume 6 (2002), pp. 456-461 | DOI | Zbl
[11] Boundedness and asymptotic behavior of the solutions of a fuzzy difference equation, Fuzzy Sets and Systems, Volume 140 (2003), pp. 523-539 | DOI
[12] A fuzzy difference equation of a rational form, J. Nonlinear Math. Phys., Volume 12 (2005), pp. 300-315 | DOI | Zbl
[13] Behavior of the positive solutions of fuzzy max- difference equations, Adv. Difference Equ., Volume 2005 (2005), pp. 153-172 | Zbl | DOI
[14] The periodic nature of the positive solutions of a nonlinear fuzzy max-difference equation, Inform. Sci., Volume 176 (2006), pp. 3694-3710 | DOI | Zbl
[15] On an exponential-type fuzzy difference equation, Adv. Difference Equ., Volume 2010 (2010), pp. 1-19 | DOI | Zbl
[16] Embedding problem of noncompact fuzzy number space E~(I), Fuzzy Sets and Systems, Volume 105 (1999), pp. 165-169 | DOI | Zbl
[17] The first order fuzzy difference equation \(x_{n+1} = Ax_n + B\) , (Chinese), Mohu Xitong yu Shuxue, Volume 23 (2009), pp. 74-79 | Zbl
[18] Dynamical behavior of a third-order rational fuzzy difference equation, Adv. Difference Equ., Volume 2015 (2015), pp. 1-18 | Zbl | DOI
[19] On the fuzzy difference equation \(x_{n+1} = A + \sum^k_{i =0} B/x_{n-i }\), International J. Math. Comput. Phys. Elect. Comput. Eng., Volume 5 (2011), pp. 490-495
[20] Behavior of solutions to a fuzzy nonlinear difference equation, Iran J. Fuzzy Sys., Volume 9 (2012), pp. 1-12 | Zbl
[21] On first order fuzzy Ricatti difference equation, Inform. Sci., Volume 270 (2014), pp. 226-236 | DOI
Cité par Sources :