Stability of pathogen dynamics models with viral and cellular infections and immune impairment :
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 456-468 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

We study the global stability analysis of pathogen infection models with immune impairment. Both pathogen-to-susceptible and infected-to-susceptible transmissions have been considered. We drive the basic reproduction parameter $\mathcal{R}_{0}$, which determines the global dynamics of models. Using the method of Lyapunov function, we established the global stability of the steady states of the models. Numerical simulations are used to confirm the theoretical results.

DOI : 10.22436/jnsa.011.04.02
Classification : 34D23, 92D30, 37B25
Keywords: Global stability, pathogen infection, immune impairment transfer, Lyapunov function, cell-to-cell transmission

Elaiw, A. M.   1   ; Raezah, A. A.   2   ; Alofi, B. S.   1

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Faculty of Science, King Khalid University, P. O. Box 25145, Abha 61466, Saudi Arabia
@article{10_22436_jnsa_011_04_02,
     author = {Elaiw, A. M.  and Raezah, A. A.  and Alofi, B. S. },
     title = {Stability of pathogen dynamics models with viral and cellular infections and immune impairment},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {456-468},
     year = {2018},
     volume = {11},
     number = {4},
     doi = {10.22436/jnsa.011.04.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.02/}
}
TY  - JOUR
AU  - Elaiw, A. M. 
AU  - Raezah, A. A. 
AU  - Alofi, B. S. 
TI  - Stability of pathogen dynamics models with viral and cellular infections and immune impairment
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 456
EP  - 468
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.02/
DO  - 10.22436/jnsa.011.04.02
LA  - en
ID  - 10_22436_jnsa_011_04_02
ER  - 
%0 Journal Article
%A Elaiw, A. M. 
%A Raezah, A. A. 
%A Alofi, B. S. 
%T Stability of pathogen dynamics models with viral and cellular infections and immune impairment
%J Journal of nonlinear sciences and its applications
%D 2018
%P 456-468
%V 11
%N 4
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.04.02/
%R 10.22436/jnsa.011.04.02
%G en
%F 10_22436_jnsa_011_04_02
Elaiw, A. M. ; Raezah, A. A. ; Alofi, B. S. . Stability of pathogen dynamics models with viral and cellular infections and immune impairment. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 4, p. 456-468. doi: 10.22436/jnsa.011.04.02

[1] Arnaout, R. A.; Nowak, M. A.; D. Wodarz HIV1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing?, Proc. Roy. Soc. Lond. B, Volume 267 (2000), pp. 1347-1354 | DOI

[2] Avila-Vales, E.; Chan-Chí, N.; G. García-Almeida Analysis of a viral infection model with immune impairment, intracellular delay and general non-linear incidence rate , Chaos Solitons Fractals, Volume 69 (2014), pp. 1-9 | Zbl | DOI

[3] Callaway, D. S.; A. S. Perelson HIV-1 infection and low steady state viral loads, Bull. Math. Biol., Volume 64 (2002), pp. 29-64 | DOI | Zbl

[4] Chen, S.-S.; Cheng, C.-Y.; Y. Takeuchi Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, J. Math. Anal. Appl., Volume 442 (2016), pp. 642-672 | DOI | Zbl

[5] Culshaw, R. V.; Ruan, S.; Webb, G. A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., Volume 46 (2003), pp. 425-444 | DOI | Zbl

[6] A. M. Elaiw Global properties of a class of HIV models, Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 2253-2263 | DOI

[7] A. M. Elaiw Global dynamics of an HIV infection model with two classes of target cells and distributed delays , Discrete Dyn. Nat. Soc., Volume 2012 (2012), pp. 1-13 | Zbl

[8] Elaiw, A. M. Global properties of a class of virus infection models with multitarget cells, Nonlinear Dynam., Volume 69 (2012), pp. 423-435 | DOI | Zbl

[9] Elaiw, A. M.; Abukwaik, R. M.; E. O. Alzahrani Global properties of a cell mediated immunity in HIV infection model with two classes of target cells and distributed delays, Int. J. Biomath., Volume 2014 (2014), pp. 1-25 | DOI | Zbl

[10] Elaiw, A. M.; Almuallem, N. A. Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells , Math. Methods Appl. Sci., Volume 39 (2016), pp. 4-31 | Zbl | DOI

[11] Elaiw, A. M.; N. H. AlShamrani Global properties of nonlinear humoral immunity viral infection models, Int. J. Biomath., Volume 2015 (2015), pp. 1-53 | Zbl | DOI

[12] Elaiw, A. M.; N. H. AlShamrani Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal. Real World Appl., Volume 26 (2015), pp. 161-190 | Zbl | DOI

[13] Elaiw, A. M.; Azoz, S. A. Global properties of a class of HIV infection models with Beddington-DeAngelis functional response , Math. Methods Appl. Sci., Volume 36 (2013), pp. 383-394 | DOI | Zbl

[14] Elaiw, A. M.; Hassanien, I.; S. A. Azoz Global stability of HIV infection models with intracellular delays , J. Korean Math. Soc., Volume 49 (2012), pp. 779-794 | DOI

[15] Elaiw, A. M.; Raezah, A. A.; Hattaf, K. Stability of HIV-1 infection with saturated virus-target and infected-target incidences and CTL immune response, Int. J. Biomath., Volume 2017 (2017), pp. 1-29 | Zbl | DOI

[16] Gómez-Acevedo, H.; Li, M. Y. Backward bifurcation in a model for HTLV-I infection of CD4+ T cells, Bull. Math. Biol., Volume 67 (2005), pp. 101-114 | Zbl | DOI

[17] Hu, Z.; Zhang, J.; Wang, H.; Ma, W.; Liao, F. Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Appl. Math. Model., Volume 38 (2014), pp. 524-534 | DOI

[18] Huang, D.; Zhang, X.; Guo, Y.; H.Wang Analysis of an HIV infection model with treatments and delayed immune response , Appl. Math. Model., Volume 40 (2016), pp. 3081-3089 | DOI

[19] Krishnapriya, P.; M. Pitchaimani Analysis of time delay in viral infection model with immune impairment, J. Appl. Math. Comput., Volume 55 (2017), pp. 421-453 | DOI | Zbl

[20] Krishnapriya, P.; Pitchaimani, M. Modeling and bifurcation analysis of a viral infection with time delay and immune impairment, Jpn. J. Ind. Appl. Math., Volume 34 (2017), pp. 99-139 | DOI | Zbl

[21] Lai, X.; Zou, X. Modelling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission , SIAM J. Appl. Math., Volume 74 (2014), pp. 898-917 | DOI

[22] Lai, X.; Zou, X. Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl., Volume 426 (2015), pp. 563-584 | Zbl | DOI

[23] Li, B.; Chen, Y.; Lu, X.; S. Liu A delayed HIV-1 model with virus waning term , Math. Biosci. Eng., Volume 13 (2016), pp. 135-157 | DOI | Zbl

[24] Li, X.; S. Fu Global stability of a virus dynamics model with intracellular delay and CTL immune response, Math. Methods Appl. Sci., Volume 38 (2015), pp. 420-430 | DOI

[25] Li, M. Y.; H. Shu Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response, Nonlinear Anal. Real World Appl., Volume 13 (2012), pp. 1080-1092 | Zbl | DOI

[26] Li, M. Y.; L. Wang Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral treatment, Nonlinear Anal. Real World Appl., Volume 17 (2014), pp. 147-160 | DOI | Zbl

[27] Lv, C.; Huang, L.; Yuan, Z. Global stability for an HIV-1 infection model with Beddington–DeAngelis incidence rate and CTL immune response , Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 121-127 | DOI | Zbl

[28] Monica, C.; Pitchaimani, M. Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays, Nonlinear Anal. Real World Appl., Volume 27 (2016), pp. 55-69 | Zbl | DOI

[29] Neumann, A. U.; Lam, N. P.; Dahari, H.; Gretch, D. R.; Wiley, T. E.; Layden, T. J.; Perelson, A. S. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy , Science, Volume 282 (1998), pp. 103-107 | DOI

[30] Nowak, M. A.; C. R. M. Bangham Population dynamics of immune responses to persistent viruses, Science, Volume 272 (1996), pp. 74-79

[31] Nowak, M. A.; R. May Virus dynamics: Mathematical Principles of Immunology and Virology, Oxford Uni., UK, 2000

[32] Pang, J.; J.-A. Cui Analysis of a hepatitis B viral infection model with immune response delay , Int. J. Biomath., Volume 2017 (2017), pp. 1-18 | DOI | Zbl

[33] Pang, J.; J.-A. Cui. J. Hui The importance of immune responses in a model of hepatitis B virus , Nonlinear Dynam., Volume 67 (2012), pp. 723-734 | DOI | Zbl

[34] Pourbashash, H.; Pilyugin, S. S.; Leenheer, P. De; McCluskey, C. Global analysis of within host virus models with cell-to-cell viral transmission, Discrete Contin. Dyn. Syst. Ser. B, Volume 19 (2014), pp. 3341-3357 | Zbl | DOI

[35] Regoes, R. R.; Wodarz, D.; Nowak, M. A. Virus dynamics: the effect to target cell limitation and immune responses on virus evolution , J. Theor. Biol., Volume 191 (1998), pp. 451-462 | DOI

[36] Roy, P. K.; Chatterjee, A. N.; Greenhalgh, D.; Khan, Q. J. A. Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model, Nonlinear Anal. Real World Appl., Volume 14 (2013), pp. 1621-1633 | Zbl | DOI

[37] Shu, H.; L.Wang; J.Watmough Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., Volume 73 (2013), pp. 1280-1302 | DOI | Zbl

[38] Wang, X.; Elaiw, A. M.; X. Song Global properties of a delayed HIV infection model with CTL immune response, Appl. Math. Comput., Volume 218 (2012), pp. 9405-9414 | Zbl | DOI

[39] Wang, K.; Fan, A.; A. Torres Global properties of an improved hepatitis B virus model, Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 3131-3138 | DOI | Zbl

[40] Wang, J.; Guo, M.; Liu, X.; Zhao, Z. Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, Appl. Math. Comput., Volume 291 (2016), pp. 149-161 | DOI

[41] Wang, J.; Lang, J.; X. Zou Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission , Nonlinear Anal. Real World Appl., Volume 34 (2017), pp. 75-96 | DOI | Zbl

[42] Wang, L.; Li, M. Y.; Kirschner, D. Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression , Math. Biosci., Volume 179 (2002), pp. 207-217 | DOI | Zbl

[43] Wang, S.; Song, X.; Ge, Z. Dynamics analysis of a delayed viral infection model with immune impairment , Appl. Math. Model., Volume 35 (2011), pp. 4877-4885 | DOI | Zbl

[44] Wang, K.; Wang, W.; Liu, X. Global Stability in a viral infection model with lytic and nonlytic immune response, Comput. Math. Appl., Volume 51 (2006), pp. 1593-1610 | DOI

[45] Yang, Y.; Zou, L.; S. Ruan Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., Volume 270 (2015), pp. 183-191 | Zbl | DOI

[46] Zhang, F.; Li, J.; Zheng, C.; L. Wang Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation, Commun. Nonlinear Sci. Numer. Simul., Volume 42 (2017), pp. 464-476 | DOI

[47] Zhang, S.; X. Xu Dynamic analysis and optimal control for a model of hepatitis C with treatment, Commun. Nonlinear Sci. Numer. Simul., Volume 46 (2017), pp. 14-25 | DOI

[48] Zhao, Y.; Z. Xu Global dynamics for a delyed hepatitis C virus,infection model , Electron. J. Differential Equations, Volume 2014 (2014), pp. 1-18

Cité par Sources :