Boundedness criteria for commutators of some sublinear operators in weighted Morrey spaces :
Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 26-48 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper, we obtain bounded criteria on certain weighted Morrey spaces for the commutators generalized by some sublinear integral operators and weighted Lipschitz functions. We also present bounded criteria for commutators generalized by such sublinear integral operators and weighted BMO function on the weighted Morrey spaces. As applications, our results yield the same bounded criteria for those commutators on the classical weighted Morrey spaces.

DOI : 10.22436/jnsa.011.01.04
Classification : 42B25, 42B30
Keywords: Weighted Morrey space, criteria, commutator, weighted Lipschitz function

Chen, Xiaoli   1

1 Department of Mathematics, Jiangxi Normal University Nanchang, Jiangxi 330022, P. R. China
@article{10_22436_jnsa_011_01_04,
     author = {Chen, Xiaoli },
     title = {Boundedness criteria for commutators of some sublinear operators in weighted {Morrey} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {26-48},
     year = {2018},
     volume = {11},
     number = {1},
     doi = {10.22436/jnsa.011.01.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.04/}
}
TY  - JOUR
AU  - Chen, Xiaoli 
TI  - Boundedness criteria for commutators of some sublinear operators in weighted Morrey spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2018
SP  - 26
EP  - 48
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.04/
DO  - 10.22436/jnsa.011.01.04
LA  - en
ID  - 10_22436_jnsa_011_01_04
ER  - 
%0 Journal Article
%A Chen, Xiaoli 
%T Boundedness criteria for commutators of some sublinear operators in weighted Morrey spaces
%J Journal of nonlinear sciences and its applications
%D 2018
%P 26-48
%V 11
%N 1
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.011.01.04/
%R 10.22436/jnsa.011.01.04
%G en
%F 10_22436_jnsa_011_01_04
Chen, Xiaoli . Boundedness criteria for commutators of some sublinear operators in weighted Morrey spaces. Journal of nonlinear sciences and its applications, Tome 11 (2018) no. 1, p. 26-48. doi: 10.22436/jnsa.011.01.04

[1] García-Cuerva, J.; Francia, J. L. Rubio de Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985

[2] Ding, Y.; Yang, D.; Zhou, Z. Boundedness of sublinear operators and commutators on \(L^{p,\omega}(\mathbb{R}^n)\), Yokohama Math. J., Volume 46 (1998), pp. 15-27

[3] Fan, D.; Lu, S.; Yang, D. Regularity in Morrey spaces of strong solutions to non-divergence elliptic equations with VMO coefficients, Georgian Math. J., Volume 5 (1998), pp. 425-440 | DOI

[4] Fazio, G.; Ragusa, M. A. Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., Volume 112 (1993), pp. 241-256 | DOI | Zbl

[5] García-Cuerva, J. Weighted \(H_p\) spaces, Dissert. Math., Volume 1979 (1979 ), pp. 1-63

[6] Grafakos, L. Classical and Modern Fourier Analysis, Pearson Education Inc., New Jersey, 2004

[7] Hu, B.; Gu, J. Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz functions, J. Math. Anal. Appl., Volume 340 (2008), pp. 598-605 | Zbl | DOI

[8] Komori, Y.; Mizuhara, T. Notes on Commutators and Morrey Spaces, Hokkaido Math. J., Volume 32 (2003), pp. 345-353

[9] Komori, Y.; Shirai, S. Weighted Morrey spaces and a singular integral operator, Math. Nachr., Volume 282 (2009), pp. 219-231 | DOI

[10] Lin, Y. Strongly singular Calderón -Zygmund operator and commutator on Morrey type spaces, Acta Math. Sin., Volume 23 (2007), pp. 2097-2110 | DOI | Zbl

[11] Lin, Y.; Sun, G. Strongly singular Calderón -Zygmund operator and commutator on weighted Morrey type spaces, J. Ineq. Appl., Volume 2014 (2014), pp. 1-15

[12] Lu, S.; Wu, Q. CBMO estimates for commutators and multilinear singular integrals, Math. Nachr., Volume 276 (2004), pp. 75-88 | Zbl | DOI

[13] Lu, S.; Yang, D.; Zhou, Z. Sublinear operators with rough kernel on generalized Morrey spaces, Hokkaido Math. J., Volume 27 (1998), pp. 219-232

[14] Mizuhara, T. Boundedness of some classical operators on generalized Morrey spaces, Springer, Tokyo, 1991 | DOI

[15] Morrey, C. B. On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., Volume 43 (1938), pp. 126-166 | DOI

[16] Nakamura, S.; Sawano, Y. The singular integral operator and its commutator on weighted Morrey spaces, Collect. Math., Volume 68 (2017), pp. 145-174 | DOI | Zbl

[17] Samko, N. Weighted Hardy and singular operators in Morrey spaces, J. Math. Anal. Appl., Volume 350 (2009), pp. 56-72 | DOI

[18] Sawano, Y.; Tanaka, H. Sharp maximal inequalities and commutators on Morrey spaces with non-doubling measures, Taiwanese J. Math., Volume 11 (2007), pp. 1091-1112 | DOI | Zbl

[19] Soria, F.; Weiss, G. A remark on singular integrals and power weights, Indiana Univ. Math. J., Volume 43 (1994), pp. 187-204 | Zbl | DOI

Cité par Sources :