Two-step Maruyama schemes for nonlinear stochastic differential delay equations :
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5245-5260 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

This work concerns the two-step Maruyama schemes for nonlinear stochastic differential delay equations (SDDEs). We first examine the strong convergence rates of the split two-step Maruyama scheme and linear two-step Maruyama scheme (including Adams-Bashforth and Adams-Moulton schemes) for nonlinear SDDEs with highly nonlinear delay variables, then we investigate the exponential mean square stability and exponential decay rates of the two classes of two-step Maruyama schemes. These results are important for three reasons: first, the convergence rates are established under the non-global Lipschitz condition; second, these stability results show that these two-step Maruyama schemes can not only reproduce the exponential mean square stability, but also preserve the bound of Lyapunov exponent for sufficient small stepsize; third, they are also suitable for the corresponding two-step Maruyama methods of stochastic ordinary differential equations (SODEs).

DOI : 10.22436/jnsa.010.10.11
Classification : 65C30, 93E15, 60H35
Keywords: Stochastic differential equations (SDEs), two-step Maruyama schemes, strong convergence rate, exponential mean square stability

Lei, Dongxia   1   ; Zong, Xiaofeng   2   ; Hu, Junhao   3

1 School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China
2 School of Automation, China University of Geosciences, Wuhan, 430074, China
3 School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan, 430074, China
@article{10_22436_jnsa_010_10_11,
     author = {Lei, Dongxia  and Zong, Xiaofeng  and Hu, Junhao },
     title = {Two-step {Maruyama} schemes for nonlinear stochastic differential delay equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5245-5260},
     year = {2017},
     volume = {10},
     number = {10},
     doi = {10.22436/jnsa.010.10.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.11/}
}
TY  - JOUR
AU  - Lei, Dongxia 
AU  - Zong, Xiaofeng 
AU  - Hu, Junhao 
TI  - Two-step Maruyama schemes for nonlinear stochastic differential delay equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5245
EP  - 5260
VL  - 10
IS  - 10
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.11/
DO  - 10.22436/jnsa.010.10.11
LA  - en
ID  - 10_22436_jnsa_010_10_11
ER  - 
%0 Journal Article
%A Lei, Dongxia 
%A Zong, Xiaofeng 
%A Hu, Junhao 
%T Two-step Maruyama schemes for nonlinear stochastic differential delay equations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5245-5260
%V 10
%N 10
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.11/
%R 10.22436/jnsa.010.10.11
%G en
%F 10_22436_jnsa_010_10_11
Lei, Dongxia ; Zong, Xiaofeng ; Hu, Junhao . Two-step Maruyama schemes for nonlinear stochastic differential delay equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5245-5260. doi: 10.22436/jnsa.010.10.11

[1] Ait-Sahalia, Y. Testing continuous-time models of the spot interest rate, Rev. Financial Stud., Volume 9 (1996), pp. 385-426 | DOI

[2] Bao, J.-H.; Yuan, C.-G. Convergence rate of EM scheme for SDDEs, Proc. Amer. Math. Soc., Volume 141 (2013), pp. 3231-3243 | Zbl | DOI

[3] Beretta, E.; Kolmanovskii, V.; Shaikhet, L. Stability of epidemic model with time delays influenced by stochastic perturbations, Delay systems, Lille, (1996), Math. Comput. Simulation, Volume 45 (1998), pp. 269-277 | DOI | Zbl

[4] Bryden, A.; D. J. Higham On the boundedness of asymptotic stability regions for the stochastic theta method, BIT, Volume 43 (2003), pp. 1-6 | DOI | Zbl

[5] Buckwar, E.; Horvath-Bokor, R.; Winkler, R. Asymptotic mean-square stability of two-step methods for stochastic ordinary differential equations, BIT, Volume 46 (2006), pp. 261-282 | DOI | Zbl

[6] Buckwar, E.; Winkler, R. On two-step schemes for SDEs with small noise , PAMM, Volume 4 (2004), pp. 15-18 | Zbl | DOI

[7] Buckwar, E.; R. Winkler Multistep methods for SDEs and their application to problems with small noise, SIAM J. Numer. Anal., Volume 44 (2006), pp. 779-803 | DOI | Zbl

[8] Buckwar, E.; Winkler, R. Multi-step Maruyama methods for stochastic delay differential equations, Stoch. Anal. Appl., Volume 25 (2007), pp. 933-959 | DOI | Zbl

[9] Cao, W.-R.; Zhang, Z.-Q. On exponential mean-square stability of two-step Maruyama methods for stochastic delay differential equations, J. Comput. Appl. Math., Volume 245 (2013), pp. 182-193 | DOI | Zbl

[10] Eurich, C. W.; J. G. Milton Noise-induced transitions in human postural sway, Phys. Rev. E, Volume 54 (1996), pp. 6681-6684 | DOI

[11] Higham, D. J. Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numer. Anal., Volume 38 (2000), pp. 753-769 | DOI

[12] Higham, D. J.; Mao, X.-R.; A. M. Stuart Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., Volume 40 (2002), pp. 1041-1063 | DOI | Zbl

[13] Higham, D. J.; Mao, X.-R.; A. M. Stuart Exponential mean-square stability of numerical solutions to stochastic differential equations, LMS J. Comput. Math., Volume 6 (2003), pp. 297-313 | DOI

[14] Hobson, D. G.; Rogers, L. C. G. Complete models with stochastic volatility, Math. Finance, Volume 8 (1998), pp. 27-48 | DOI

[15] Huang, C.-M. Exponential mean square stability of numerical methods for systems of stochastic differential equations, J. Comput. Appl. Math., Volume 236 (2012), pp. 4016-4026 | DOI

[16] Huang, C.-M. Mean square stability and dissipativity of two classes of theta methods for systems of stochastic delay differential equations, J. Comput. Appl. Math., Volume 259 (2014), pp. 77-86 | Zbl | DOI

[17] Hutzenthaler, M.; A. Jentzen Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, Mem. Amer. Math. Soc., Volume 236 (2015), pp. 1-99 | Zbl | DOI

[18] Kloeden, P. E.; Platen, E. Numerical solution of stochastic differential equations, Applications of Mathematics (New York), Springer-Verlag, Berlin, 1992

[19] Liu, M.-Z.; Cao, W.-R.; Fan, Z.-C. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation, J. Comput. Appl. Math., Volume 170 (2004), pp. 255-268 | Zbl | DOI

[20] Longtin, A.; Milton, J. G.; Bos, J. E.; Mackey, M. C. Noise and critical behavior of the pupil light reflex at oscillation onset, Phys. Rev. A, Volume 41 (1990), pp. 6992-7005 | DOI

[21] Mao, X.-R. Stochastic differential equations and their applications, Horwood Publishing Series in Mathematics & Applications, Horwood Publishing Limited, Chichester, 1997

[22] Milstein, G. N. Numerical integration of stochastic differential equations, Translated and revised from the 1988 Russian original, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1995

[23] Milstein, G. N.; M. V. Tretyakov Stochastic numerics for mathematical physics, Scientific Computation, Springer- Verlag, Berlin, 2004 | DOI

[24] Saito, Y.; T. Mitsui Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal., Volume 33 (1996), pp. 2254-2267 | DOI

[25] Sickenberger, T. Mean-square convergence of stochastic multi-step methods with variable step-size , J. Comput. Appl. Math., Volume 212 (2008), pp. 300-319 | Zbl | DOI

[26] Tapaswi, P. K.; Mukhopadhyay, A. Effects of environmental fluctuation on plankton allelopathy, J. Math. Biol., Volume 39 (1999), pp. 39-58 | Zbl | DOI

[27] Tocino, A.; Senosiain, M. J. Asymptotic mean-square stability of two-step Maruyama schemes for stochastic differential equations, J. Comput. Appl. Math., Volume 260 (2014), pp. 337-348 | DOI | Zbl

[28] Wang, X.-J.; Gan, S.-Q. The improved split-step backward Euler method for stochastic differential delay equations, Int. J. Comput. Math., Volume 88 (2011), pp. 2359-2378 | DOI | Zbl

[29] Wang, X.-J.; Gan, S.-Q.; D.-S. Wang A family of fully implicit Milstein methods for stiff stochastic differential equations with multiplicative noise, BIT, Volume 52 (2012), pp. 741-772 | Zbl | DOI

[30] Wu, F.-K.; Mao, X.-R.; Chen, K. The Cox-Ingersoll-Ross model with delay and strong convergence of its Euler-Maruyama approximate solutions, Appl. Numer. Math., Volume 59 (2009), pp. 2641-2658 | Zbl | DOI

[31] Zong, X.-F.; F.-K. Wu Choice of \(\theta\) and mean-square exponential stability in the stochastic theta method of stochastic differential equations, J. Comput. Appl. Math., Volume 255 (2014), pp. 837-847 | Zbl | DOI

[32] Zong, X.-F.; Wu, F.-K.; Huang, C.-M. Convergence and stability of the semi-tamed Euler scheme for stochastic differential equations with non-Lipschitz continuous coefficients, Appl. Math. Comput., Volume 228 (2014), pp. 240-250 | DOI | Zbl

[33] Zong, X.-F.; Wu, F.-K.; Huang, C.-M. Preserving exponential mean square stability and decay rates in two classes of theta approximations of stochastic differential equations, J. Difference Equ. Appl., Volume 20 (2014), pp. 1091-1111 | Zbl | DOI

[34] Zong, X.-F.; Wu, F.-K.; Huang, C.-M. Theta-Euler schemes for SDEs with non-global Lipschitz continuous coeffcients (Submitted)

Cité par Sources :