On approximate homomorphisms of ternary semigroups :
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4071-4076 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

We prove the generalized Ulam stability of ternary homomorphisms from commutative ternary semigroups into $n$-Banach spaces as well as into complete non-Archimedean normed spaces. Ternary algebraic structures appear in various domains of theoretical and mathematical physics, and $p$-adic numbers, which are the most important examples of non-Archimedean fields, have gained the interest of physicists for their research in some problems coming from quantum physics, $p$-adic strings and superstrings.

DOI : 10.22436/jnsa.010.08.03
Classification : 12J25, 17A40, 39B52, 39B82
Keywords: Ulam stability, (commutative) ternary semigroup, ternary homomorphism, n-Banach space, (complete) non-Archimedean normed space, p-adic numbers.

Ciepliński, Krzysztof  1

1 Faculty of Applied Mathematics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
@article{10_22436_jnsa_010_08_03,
     author = {Ciepli\'nski, Krzysztof},
     title = {On approximate homomorphisms of ternary semigroups},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4071-4076},
     year = {2017},
     volume = {10},
     number = {8},
     doi = {10.22436/jnsa.010.08.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.03/}
}
TY  - JOUR
AU  - Ciepliński, Krzysztof
TI  - On approximate homomorphisms of ternary semigroups
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4071
EP  - 4076
VL  - 10
IS  - 8
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.03/
DO  - 10.22436/jnsa.010.08.03
LA  - en
ID  - 10_22436_jnsa_010_08_03
ER  - 
%0 Journal Article
%A Ciepliński, Krzysztof
%T On approximate homomorphisms of ternary semigroups
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4071-4076
%V 10
%N 8
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.03/
%R 10.22436/jnsa.010.08.03
%G en
%F 10_22436_jnsa_010_08_03
Ciepliński, Krzysztof. On approximate homomorphisms of ternary semigroups. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4071-4076. doi: 10.22436/jnsa.010.08.03

[1] Amyari, M.; Moslehian, M. S. Approximate homomorphisms of ternary semigroups, Lett. Math. Phys., Volume 77 (2006), pp. 1-9 | DOI

[2] Bazunova, N.; Borowiec, A.; R. Kerner Universal differential calculus on ternary algebras, Lett. Math. Phys., Volume 67 (2004), pp. 195-206 | Zbl | DOI

[3] Brillouët-Belluot, N.; Brzdęk, J.; K. Ciepliński On some recent developments in Ulam’s type stability, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-41 | DOI | Zbl

[4] Chu, H.-Y.; Kim, A.; J. Park On the Hyers-Ulam stabilities of functional equations on n-Banach spaces, Math. Nachr., Volume 289 (2016), pp. 1177-1188 | DOI | Zbl

[5] Dutta, H. On some n-normed linear space valued difference sequences, J. Franklin Inst., Volume 248 (2011), pp. 2876-2883 | Zbl | DOI

[6] Gehér, G. P. On n-norm preservers and the Aleksandrov conservative n-distance problem, ArXiv, Volume 2015 (2015), pp. 1-9 | DOI | Zbl

[7] Gunawan, H.; Mashadi, M. On n-normed spaces, Int. J. Math. Math. Sci., Volume 27 (2001), pp. 631-639

[8] S.-M. Jung Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Science and Business Media, New York, 2011 | DOI

[9] R. Kerner Ternary and non-associative structures, Int. J. Geom. Methods Mod. Phys., Volume 5 (2008), pp. 1265-1294 | DOI | Zbl

[10] A. Khrennikov Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, Kluwer Academic Publishers, Dordrecht, 1997 | DOI

[11] Y. Ma The Aleksandrov-Benz-Rassias problem on linear n-normed spaces, Monatsh. Math., Volume 180 (2016), pp. 305-316 | DOI | Zbl

[12] Misiak, A. n-inner product spaces, Math. Nachr., Volume 140 (1989), pp. 299-319 | DOI

[13] M. S. Moslehian Ternary derivations, stability and physical aspects, Acta Appl. Math., Volume 100 (2008), pp. 187-199 | Zbl | DOI

[14] Moslehian, M. S.; Rassias, T. M. Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math., Volume 1 (2007), pp. 325-334

[15] Park, C.; M. E. Gordji Comment on ”Approximate ternary Jordan derivations on Banach ternary algebras”, [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)], J. Math. Phys., Volume 2010 (2010), pp. 1-7 | DOI | Zbl

[16] Rassias, J. M.; Kim, H.-M. Approximate homomorphisms and derivations between \(C^*\)-ternary algebras, J. Math. Phys., Volume 2008 (2008), pp. 1-10 | DOI | Zbl

[17] Santiago, M. L.; S. Sri Bala Ternary semigroups , Semigroup Forum, Volume 81 (2010), pp. 380-388

[18] Xu, T. Z. Stability of multi-Jensen mappings in non-Archimedean normed spaces, J. Math. Phys., Volume 2012 (2012), pp. 1-9 | DOI | Zbl

[19] Xu, T. Z.; Rassias, J. M. On the Hyers-Ulam stability of a general mixed additive and cubic functional equation in n-Banach spaces, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-23 | Zbl

Cité par Sources :