The aim of this paper is to extend the result of [M. Jleli, B. Samet, J. Inequal. Appl., 2014 (2014), 8 pages] by applying a simple condition on the function $\Theta$. With this condition, we also prove some fixed point theorems for Suzuki-Berinde type $\Theta$-contractions which generalize various results of literature. Finally, we give one example to illustrate the main results in this paper.
Keywords: Complete metric space, \(\Theta\)-contraction, Suzuki-Berinde type \(\Theta\)-contraction, fixed point.
Ahmad, Jamshaid  1 ; Al-Mazrooei, Abdullah E.  1 ; Cho, Yeol Je  2 ; Yang, Young-Oh  3
@article{10_22436_jnsa_010_05_07,
author = {Ahmad, Jamshaid and Al-Mazrooei, Abdullah E. and Cho, Yeol Je and Yang, Young-Oh},
title = {Fixed point results for generalized {\(\Theta\)-contractions}},
journal = {Journal of nonlinear sciences and its applications},
pages = {2350-2358},
year = {2017},
volume = {10},
number = {5},
doi = {10.22436/jnsa.010.05.07},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.07/}
}
TY - JOUR AU - Ahmad, Jamshaid AU - Al-Mazrooei, Abdullah E. AU - Cho, Yeol Je AU - Yang, Young-Oh TI - Fixed point results for generalized \(\Theta\)-contractions JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2350 EP - 2358 VL - 10 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.07/ DO - 10.22436/jnsa.010.05.07 LA - en ID - 10_22436_jnsa_010_05_07 ER -
%0 Journal Article %A Ahmad, Jamshaid %A Al-Mazrooei, Abdullah E. %A Cho, Yeol Je %A Yang, Young-Oh %T Fixed point results for generalized \(\Theta\)-contractions %J Journal of nonlinear sciences and its applications %D 2017 %P 2350-2358 %V 10 %N 5 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.07/ %R 10.22436/jnsa.010.05.07 %G en %F 10_22436_jnsa_010_05_07
Ahmad, Jamshaid; Al-Mazrooei, Abdullah E.; Cho, Yeol Je; Yang, Young-Oh. Fixed point results for generalized \(\Theta\)-contractions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2350-2358. doi: 10.22436/jnsa.010.05.07
[1] Fixed point results for \(\{\alpha,\xi\}\)-expansive locally contractive mappings, J. Inequal. Appl., Volume 2014 (2014), pp. 1-10 | Zbl | DOI
[2] New fixed point theorems for generalized F-contractions in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | DOI | Zbl
[3] Common fixed point theorems for JS-contractions, Bull. Math. Anal. Appl., Volume 8 (2016), pp. 12-22
[4] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181
[5] General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Math., Volume 24 (2008), pp. 10-19 | Zbl
[6] A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273 | DOI
[7] On fixed and periodic points under contractive mappings, J. London Math. Soc., Volume 37 (1962), pp. 74-79 | DOI
[8] Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-17 | DOI
[9] A new generalization of the Banach contraction principle, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | DOI
[10] Fixed point theorems of JS-quasi-contractions, Fixed Point Theory Appl., Volume 2016 (2016), pp. 1-11 | Zbl | DOI
[11] A new type of fixed point theorem in metric spaces, Nonlinear Anal., Volume 71 (2009), pp. 5313-5317 | DOI
[12] A generalization of Nadler fixed point theorem, Carpathian J. Math., Volume 31 (2015), pp. 403-410
Cité par Sources :