Fixed point results for generalized $\Theta$-contractions :
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2350-2358 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

The aim of this paper is to extend the result of [M. Jleli, B. Samet, J. Inequal. Appl., 2014 (2014), 8 pages] by applying a simple condition on the function $\Theta$. With this condition, we also prove some fixed point theorems for Suzuki-Berinde type $\Theta$-contractions which generalize various results of literature. Finally, we give one example to illustrate the main results in this paper.

DOI : 10.22436/jnsa.010.05.07
Classification : 46S40, 47H10, 54H25
Keywords: Complete metric space, \(\Theta\)-contraction, Suzuki-Berinde type \(\Theta\)-contraction, fixed point.

Ahmad, Jamshaid  1   ; Al-Mazrooei, Abdullah E.  1   ; Cho, Yeol Je  2   ; Yang, Young-Oh  3

1 Department of Mathematics, University of Jeddah, P. O. Box 80327, Jeddah 21589, Saudi Arabia
2 Department of Mathematics Education and the RINS, Gyeongsang National University, Jinju 660-701, Korea;Center for General Education, China Medical University, Taichung 40402, Taiwan
3 Department of Mathematics, Jeju National University, Jeju 690-756, Korea
@article{10_22436_jnsa_010_05_07,
     author = {Ahmad, Jamshaid and Al-Mazrooei, Abdullah E. and Cho, Yeol Je and Yang, Young-Oh},
     title = {Fixed point results for generalized {\(\Theta\)-contractions}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2350-2358},
     year = {2017},
     volume = {10},
     number = {5},
     doi = {10.22436/jnsa.010.05.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.07/}
}
TY  - JOUR
AU  - Ahmad, Jamshaid
AU  - Al-Mazrooei, Abdullah E.
AU  - Cho, Yeol Je
AU  - Yang, Young-Oh
TI  - Fixed point results for generalized \(\Theta\)-contractions
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2350
EP  - 2358
VL  - 10
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.07/
DO  - 10.22436/jnsa.010.05.07
LA  - en
ID  - 10_22436_jnsa_010_05_07
ER  - 
%0 Journal Article
%A Ahmad, Jamshaid
%A Al-Mazrooei, Abdullah E.
%A Cho, Yeol Je
%A Yang, Young-Oh
%T Fixed point results for generalized \(\Theta\)-contractions
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2350-2358
%V 10
%N 5
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.07/
%R 10.22436/jnsa.010.05.07
%G en
%F 10_22436_jnsa_010_05_07
Ahmad, Jamshaid; Al-Mazrooei, Abdullah E.; Cho, Yeol Je; Yang, Young-Oh. Fixed point results for generalized \(\Theta\)-contractions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2350-2358. doi: 10.22436/jnsa.010.05.07

[1] Ahmad, A.; Al-Rawashdeh, A. S.; Azam, A. Fixed point results for \(\{\alpha,\xi\}\)-expansive locally contractive mappings, J. Inequal. Appl., Volume 2014 (2014), pp. 1-10 | Zbl | DOI

[2] Ahmad, J.; Al-Rawashdeh, A.; Azam, A. New fixed point theorems for generalized F-contractions in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | DOI | Zbl

[3] Al-Rawashdeh, A.; Ahmad, J. Common fixed point theorems for JS-contractions, Bull. Math. Anal. Appl., Volume 8 (2016), pp. 12-22

[4] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181

[5] Berinde, V. General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Math., Volume 24 (2008), pp. 10-19 | Zbl

[6] Ćirić, L. B. A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273 | DOI

[7] Edelstein, M. On fixed and periodic points under contractive mappings, J. London Math. Soc., Volume 37 (1962), pp. 74-79 | DOI

[8] Hussain, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-17 | DOI

[9] Jleli, M.; Samet, B. A new generalization of the Banach contraction principle, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | DOI

[10] Li, Z.-L.; Jiang, S.-J. Fixed point theorems of JS-quasi-contractions, Fixed Point Theory Appl., Volume 2016 (2016), pp. 1-11 | Zbl | DOI

[11] Suzuki, T. A new type of fixed point theorem in metric spaces, Nonlinear Anal., Volume 71 (2009), pp. 5313-5317 | DOI

[12] Vetro, F. A generalization of Nadler fixed point theorem, Carpathian J. Math., Volume 31 (2015), pp. 403-410

Cité par Sources :