In this paper, first, we introduce several types of the Ulam-Hyers stability, the well-posedness and the limit shadowing property of fixed point problems in $M_s$-metric spaces. Second, we give such results for fixed point problems of Banach and Kannan contractive mappings in $M_s$-metric spaces. Finally, we give some examples to illustrate the validity of our main results.
Keywords: Fixed point problem, Ulam-Hyers stability, well-posedness, limit shadowing property, \(M_s\)-metric spaces.
Zhou, Mi  1 ; Liu, Xiao-lan  2 ; Cho, Yeol Je  3 ; Damjanovic, Boško  4
@article{10_22436_jnsa_010_05_02,
author = {Zhou, Mi and Liu, Xiao-lan and Cho, Yeol Je and Damjanovic, Bo\v{s}ko},
title = {Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in {\(M_s\)-metric} spaces},
journal = {Journal of nonlinear sciences and its applications},
pages = {2296-2308},
year = {2017},
volume = {10},
number = {5},
doi = {10.22436/jnsa.010.05.02},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.02/}
}
TY - JOUR AU - Zhou, Mi AU - Liu, Xiao-lan AU - Cho, Yeol Je AU - Damjanovic, Boško TI - Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in \(M_s\)-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2296 EP - 2308 VL - 10 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.02/ DO - 10.22436/jnsa.010.05.02 LA - en ID - 10_22436_jnsa_010_05_02 ER -
%0 Journal Article %A Zhou, Mi %A Liu, Xiao-lan %A Cho, Yeol Je %A Damjanovic, Boško %T Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in \(M_s\)-metric spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 2296-2308 %V 10 %N 5 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.02/ %R 10.22436/jnsa.010.05.02 %G en %F 10_22436_jnsa_010_05_02
Zhou, Mi; Liu, Xiao-lan; Cho, Yeol Je; Damjanovic, Boško. Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in \(M_s\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2296-2308. doi: 10.22436/jnsa.010.05.02
[1] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181
[2] Ulam-Hyers stability results for fixed point problems via \(\alpha-\psi\)-contractive mapping in (b)-metric space, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-6
[3] Ulam-Hyers stability for operatorial equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 57 (2011), pp. 65-74 | DOI
[4] Sur la porosité de l’ensemble des contractions sans point fixe, (French) [[On the porosity of the set of contractions without fixed points]] C. R. Acad. Sci. Paris Sér. I Math., Volume 308 (1989), pp. 51-54 | Zbl
[5] Some results on fixed points, II, Amer. Math. Monthly, Volume 76 (1969), pp. 405-408
[6] Well-posedness and porosity of a certain class of operators, Demonstratio Math., Volume 38 (2005), pp. 169-176 | Zbl
[7] A contraction principle in partial S-metric spaces, Univers. J. Math. Math. Sci., Volume 5 (2014), pp. 109-119 | Zbl
[8] Contraction principles inMs-metric spaces, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 575-582 | DOI
[9] Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems in M-metric spaces, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 4489-4499 | Zbl
[10] Well-posedness of fixed point problems, Far East J. Math. Sci. (FJMS), Special Volume, Part III (2001), pp. 393-401
[11] A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, Volume 64 (2012), pp. 258-266
[12] Completeness and fixed-points, Monatsh. Math., Volume 80 (1975), pp. 325-330 | DOI
Cité par Sources :