Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in $M_s$-metric spaces :
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2296-2308 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper, first, we introduce several types of the Ulam-Hyers stability, the well-posedness and the limit shadowing property of fixed point problems in $M_s$-metric spaces. Second, we give such results for fixed point problems of Banach and Kannan contractive mappings in $M_s$-metric spaces. Finally, we give some examples to illustrate the validity of our main results.

DOI : 10.22436/jnsa.010.05.02
Classification : 47H09, 47H10, 54H25
Keywords: Fixed point problem, Ulam-Hyers stability, well-posedness, limit shadowing property, \(M_s\)-metric spaces.

Zhou, Mi  1   ; Liu, Xiao-lan  2   ; Cho, Yeol Je  3   ; Damjanovic, Boško  4

1 School of Science and Technology, Sanya College, 572022, Sanya, Hainan, China
2 College of Science, Sichuan University of Science and Engineering, 643000, Zigong, Sichuan, China;Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing, Zigong, Sichuan 643000, China
3 Department of Mathematics Education, Gyeongsang National University, Jinju 660-701, Korea;enter for General Education, China Medical University, Taichung 40402, Taiwan
4 Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
@article{10_22436_jnsa_010_05_02,
     author = {Zhou, Mi and Liu, Xiao-lan and Cho, Yeol Je and Damjanovic, Bo\v{s}ko},
     title = {Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in {\(M_s\)-metric} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2296-2308},
     year = {2017},
     volume = {10},
     number = {5},
     doi = {10.22436/jnsa.010.05.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.02/}
}
TY  - JOUR
AU  - Zhou, Mi
AU  - Liu, Xiao-lan
AU  - Cho, Yeol Je
AU  - Damjanovic, Boško
TI  - Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in \(M_s\)-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2296
EP  - 2308
VL  - 10
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.02/
DO  - 10.22436/jnsa.010.05.02
LA  - en
ID  - 10_22436_jnsa_010_05_02
ER  - 
%0 Journal Article
%A Zhou, Mi
%A Liu, Xiao-lan
%A Cho, Yeol Je
%A Damjanovic, Boško
%T Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in \(M_s\)-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2296-2308
%V 10
%N 5
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.02/
%R 10.22436/jnsa.010.05.02
%G en
%F 10_22436_jnsa_010_05_02
Zhou, Mi; Liu, Xiao-lan; Cho, Yeol Je; Damjanovic, Boško. Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in \(M_s\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2296-2308. doi: 10.22436/jnsa.010.05.02

[1] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181

[2] Bota, M. F.; Karapınar, E.; Mleşniţe, O. Ulam-Hyers stability results for fixed point problems via \(\alpha-\psi\)-contractive mapping in (b)-metric space, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-6

[3] Bota-Boriceanu, M. F.; Petruşel, A. Ulam-Hyers stability for operatorial equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 57 (2011), pp. 65-74 | DOI

[4] Blasi, F. S. De; Myjak, J. Sur la porosité de l’ensemble des contractions sans point fixe, (French) [[On the porosity of the set of contractions without fixed points]] C. R. Acad. Sci. Paris Sér. I Math., Volume 308 (1989), pp. 51-54 | Zbl

[5] R. Kannan Some results on fixed points, II, Amer. Math. Monthly, Volume 76 (1969), pp. 405-408

[6] Lahiri, B. K.; Das, P. Well-posedness and porosity of a certain class of operators, Demonstratio Math., Volume 38 (2005), pp. 169-176 | Zbl

[7] Mlaiki, N. M. A contraction principle in partial S-metric spaces, Univers. J. Math. Math. Sci., Volume 5 (2014), pp. 109-119 | Zbl

[8] Mlaiki, N. M.; Souayah, N.; Abodayeh, K.; Abdeljawad, T. Contraction principles inMs-metric spaces, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 575-582 | DOI

[9] Pansuwan, A.; Sintunavarat, W.; Choi, J. Y.; Cho, Y. J. Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems in M-metric spaces, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 4489-4499 | Zbl

[10] Reich, S.; Zaslavski, A. J. Well-posedness of fixed point problems, Far East J. Math. Sci. (FJMS), Special Volume, Part III (2001), pp. 393-401

[11] Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, Volume 64 (2012), pp. 258-266

[12] Subrahmanyam, P. V. Completeness and fixed-points, Monatsh. Math., Volume 80 (1975), pp. 325-330 | DOI

Cité par Sources :