Strong convergence of Krasnoselski-Mann iteration for a countable family of asymptotically nonexpansive mappings in CAT(0) spaces :
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 4, p. 1326-1333 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

Based on a specific way of choosing the indices and a new concept, namely, an analogue of inner product, a modified Krasnoselski-Mann iteration scheme is proposed for approximating common fixed points of a countable family of asymptotically nonexpansive mappings; and a strong convergence theorem is established in the framework of CAT(0) spaces. Our results greatly improve and extend those of the authors whose related researches just involve a single mapping and the weaker $\Delta$-convergence.

DOI : 10.22436/jnsa.010.04.04
Classification : 47H09, 47H10, 47J25
Keywords: Krasnoselski-Mann iteration, CAT(0) spaces, infinite families of nonexpansive mappings, strong convergence, \(\Delta\)-convergence.

Qian, Shanguang  1   ; Deng, Wei-Qi  2

1 Architectural Engineering Faculty, Kunming Metallurgy College, Kunming, Yunnan, P. R. China
2 School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, P. R. China
@article{10_22436_jnsa_010_04_04,
     author = {Qian, Shanguang and Deng, Wei-Qi},
     title = {Strong convergence of {Krasnoselski-Mann} iteration for a countable family of asymptotically nonexpansive mappings in {CAT(0)} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1326-1333},
     year = {2017},
     volume = {10},
     number = {4},
     doi = {10.22436/jnsa.010.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.04/}
}
TY  - JOUR
AU  - Qian, Shanguang
AU  - Deng, Wei-Qi
TI  - Strong convergence of Krasnoselski-Mann iteration for a countable family of asymptotically nonexpansive mappings in CAT(0) spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 1326
EP  - 1333
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.04/
DO  - 10.22436/jnsa.010.04.04
LA  - en
ID  - 10_22436_jnsa_010_04_04
ER  - 
%0 Journal Article
%A Qian, Shanguang
%A Deng, Wei-Qi
%T Strong convergence of Krasnoselski-Mann iteration for a countable family of asymptotically nonexpansive mappings in CAT(0) spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 1326-1333
%V 10
%N 4
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.04/
%R 10.22436/jnsa.010.04.04
%G en
%F 10_22436_jnsa_010_04_04
Qian, Shanguang; Deng, Wei-Qi. Strong convergence of Krasnoselski-Mann iteration for a countable family of asymptotically nonexpansive mappings in CAT(0) spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 4, p. 1326-1333. doi: 10.22436/jnsa.010.04.04

[1] Bridson, M. R.; Haefliger, A. Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999 | DOI

[2] Burago, D.; Burago, Y.; Ivanov, S. A course in metric geometry, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001 | DOI

[3] Chaoha, P.; A. Phon-on A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl., Volume 320 (2006), pp. 983-987 | DOI | Zbl

[4] Deng, W.-Q.; Bai, P. An implicit iteration process for common fixed points of two infinite families of asymptotically nonexpansive mappings in Banach spaces, J. Appl. Math., Volume 2013 (2013 ), pp. 1-6 | Zbl

[5] Dhompongsa, S.; Fupinwong, W.; Kaewkhao, A. Common fixed points of a nonexpansive semigroup and a convergence theorem for Mann iterations in geodesic metric spaces, Nonlinear Anal., Volume 70 (2009), pp. 4268-4273 | DOI | Zbl

[6] Dhompongsa, S.; Kaewkhao, A.; Panyanak, B. Lim’s theorems for multivalued mappings in CAT(0) spaces, J. Math. Anal. Appl., Volume 312 (2005), pp. 478-487 | Zbl | DOI

[7] Dhompongsa, S.; Kirk, W. A.; Panyanak, B. Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 35-45

[8] Dhompongsa, S.; Kirk, W. A.; Sims, B. Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., Volume 65 (2006), pp. 762-772 | DOI

[9] Dhompongsa, S.; Panyanak, B. On \(\Delta\)-convergence theorems in CAT(0) spaces, Comput. Appl. Math., Volume 56 (2008), pp. 2572-2579 | DOI

[10] Goebel, K.; Reich, S. Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1984

[11] Hussain, N.; Khamsi, M. A. On asymptotic pointwise contractions in metric spaces, Nonlinear Anal., Volume 71 (2009), pp. 4423-4429 | DOI

[12] Kaewcharoen, A.; Kirk, W. A. Proximinality in geodesic spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-10 | Zbl

[13] Kirk, W. A. Geodesic geometry and fixed point theory, Seminar of Mathematical Analysis, Malaga/Seville, (2002/2003), Colecc. Abierta, Univ. Sevilla Secr. Publ., Seville, Volume 64 (2003), pp. 195-225

[14] Kirk, W. A. Fixed point theorems in CAT(0) spaces and R-trees , Fixed Point Theory Appl., Volume 2004 (2004), pp. 1-8 | DOI

[15] Kirk, W. A. Geodesic geometry and fixed point theory, II, International Conference on Fixed Point Theory and Applications Yokohama Publ., Yokohama (2004), pp. 113-142 | Zbl

[16] Kirk, W. A.; Panyanak, B. A concept of convergence in geodesic spaces, Nonlinear Anal., Volume 68 (2008), pp. 3689-3696 | DOI

[17] Leustean, L. A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl., Volume 325 (2007), pp. 386-399 | Zbl | DOI

[18] Lim, T. C. Remarks on some fixed point theorems, Proc. Amer. Math. Soc., Volume 60 (1976), pp. 179-182 | DOI

[19] Nanjaras, B.; Panyanak, B. Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-14

[20] Osilike, M. O.; Aniagbosor, S. C.; Akuchu, B. G. Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, PanAmer. Math. J., Volume 12 (2002), pp. 77-88

[21] Saejung, S. Halpern’s iteration in CAT(0) spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-13 | DOI

[22] Shahzad, N. Fixed point results for multimaps in CAT(0) spaces, Topology Appl., Volume 156 (2009), pp. 997-1001 | Zbl | DOI

[23] Shahzad, N. Invariant approximations in CAT(0) spaces, Nonlinear Anal., Volume 70 (2009), pp. 4338-4340 | Zbl | DOI

[24] Shahzad, N.; Markin, J. Invariant approximations for commuting mappings in CAT(0) and hyperconvex spaces, J. Math. Anal. Appl., Volume 337 (2008), pp. 1457-1464 | Zbl | DOI

Cité par Sources :