Based on a specific way of choosing the indices and a new concept, namely, an analogue of inner product, a modified Krasnoselski-Mann iteration scheme is proposed for approximating common fixed points of a countable family of asymptotically nonexpansive mappings; and a strong convergence theorem is established in the framework of CAT(0) spaces. Our results greatly improve and extend those of the authors whose related researches just involve a single mapping and the weaker $\Delta$-convergence.
Keywords: Krasnoselski-Mann iteration, CAT(0) spaces, infinite families of nonexpansive mappings, strong convergence, \(\Delta\)-convergence.
Qian, Shanguang  1 ; Deng, Wei-Qi  2
@article{10_22436_jnsa_010_04_04,
author = {Qian, Shanguang and Deng, Wei-Qi},
title = {Strong convergence of {Krasnoselski-Mann} iteration for a countable family of asymptotically nonexpansive mappings in {CAT(0)} spaces},
journal = {Journal of nonlinear sciences and its applications},
pages = {1326-1333},
year = {2017},
volume = {10},
number = {4},
doi = {10.22436/jnsa.010.04.04},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.04/}
}
TY - JOUR AU - Qian, Shanguang AU - Deng, Wei-Qi TI - Strong convergence of Krasnoselski-Mann iteration for a countable family of asymptotically nonexpansive mappings in CAT(0) spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 1326 EP - 1333 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.04/ DO - 10.22436/jnsa.010.04.04 LA - en ID - 10_22436_jnsa_010_04_04 ER -
%0 Journal Article %A Qian, Shanguang %A Deng, Wei-Qi %T Strong convergence of Krasnoselski-Mann iteration for a countable family of asymptotically nonexpansive mappings in CAT(0) spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 1326-1333 %V 10 %N 4 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.04.04/ %R 10.22436/jnsa.010.04.04 %G en %F 10_22436_jnsa_010_04_04
Qian, Shanguang; Deng, Wei-Qi. Strong convergence of Krasnoselski-Mann iteration for a countable family of asymptotically nonexpansive mappings in CAT(0) spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 4, p. 1326-1333. doi: 10.22436/jnsa.010.04.04
[1] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999 | DOI
[2] A course in metric geometry, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001 | DOI
[3] A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl., Volume 320 (2006), pp. 983-987 | DOI | Zbl
[4] An implicit iteration process for common fixed points of two infinite families of asymptotically nonexpansive mappings in Banach spaces, J. Appl. Math., Volume 2013 (2013 ), pp. 1-6 | Zbl
[5] Common fixed points of a nonexpansive semigroup and a convergence theorem for Mann iterations in geodesic metric spaces, Nonlinear Anal., Volume 70 (2009), pp. 4268-4273 | DOI | Zbl
[6] Lim’s theorems for multivalued mappings in CAT(0) spaces, J. Math. Anal. Appl., Volume 312 (2005), pp. 478-487 | Zbl | DOI
[7] Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 35-45
[8] Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., Volume 65 (2006), pp. 762-772 | DOI
[9] On \(\Delta\)-convergence theorems in CAT(0) spaces, Comput. Appl. Math., Volume 56 (2008), pp. 2572-2579 | DOI
[10] Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1984
[11] On asymptotic pointwise contractions in metric spaces, Nonlinear Anal., Volume 71 (2009), pp. 4423-4429 | DOI
[12] Proximinality in geodesic spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-10 | Zbl
[13] Geodesic geometry and fixed point theory, Seminar of Mathematical Analysis, Malaga/Seville, (2002/2003), Colecc. Abierta, Univ. Sevilla Secr. Publ., Seville, Volume 64 (2003), pp. 195-225
[14] Fixed point theorems in CAT(0) spaces and R-trees , Fixed Point Theory Appl., Volume 2004 (2004), pp. 1-8 | DOI
[15] Geodesic geometry and fixed point theory, II, International Conference on Fixed Point Theory and Applications Yokohama Publ., Yokohama (2004), pp. 113-142 | Zbl
[16] A concept of convergence in geodesic spaces, Nonlinear Anal., Volume 68 (2008), pp. 3689-3696 | DOI
[17] A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl., Volume 325 (2007), pp. 386-399 | Zbl | DOI
[18] Remarks on some fixed point theorems, Proc. Amer. Math. Soc., Volume 60 (1976), pp. 179-182 | DOI
[19] Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-14
[20] Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, PanAmer. Math. J., Volume 12 (2002), pp. 77-88
[21] Halpern’s iteration in CAT(0) spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-13 | DOI
[22] Fixed point results for multimaps in CAT(0) spaces, Topology Appl., Volume 156 (2009), pp. 997-1001 | Zbl | DOI
[23] Invariant approximations in CAT(0) spaces, Nonlinear Anal., Volume 70 (2009), pp. 4338-4340 | Zbl | DOI
[24] Invariant approximations for commuting mappings in CAT(0) and hyperconvex spaces, J. Math. Anal. Appl., Volume 337 (2008), pp. 1457-1464 | Zbl | DOI
Cité par Sources :