On a singular time-fractional order wave equation with Bessel operator and Caputo derivative  :
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 60-70 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

This paper deals with the study of the well-posedness of a mixed fractional problem for the wave equation defined in a bounded space domain. The fractional time derivative is described in the Caputo sense. We prove the existence and uniqueness of solution as well as its dependence on the given data. Our results develop and show the efficiency and effectiveness of the functional analysis method when we deal with fractional partial differential equations instead of the nonfractional equations which have been extensively studied by many authors during the last three decades.

DOI : 10.22436/jnsa.010.01.06
Classification : 35D35, 35L20
Keywords: Caputo derivative, solvability of the problem, fractional differential equation, initial boundary value problem.

Mesloub, Said  1   ; Bachar, Imed  1

1 Mathematics Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
@article{10_22436_jnsa_010_01_06,
     author = {Mesloub, Said and Bachar, Imed},
     title = {On a singular time-fractional order wave equation with {Bessel} operator and {Caputo} derivative },
     journal = {Journal of nonlinear sciences and its applications},
     pages = {60-70},
     year = {2017},
     volume = {10},
     number = {1},
     doi = {10.22436/jnsa.010.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.06/}
}
TY  - JOUR
AU  - Mesloub, Said
AU  - Bachar, Imed
TI  - On a singular time-fractional order wave equation with Bessel operator and Caputo derivative 
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 60
EP  - 70
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.06/
DO  - 10.22436/jnsa.010.01.06
LA  - en
ID  - 10_22436_jnsa_010_01_06
ER  - 
%0 Journal Article
%A Mesloub, Said
%A Bachar, Imed
%T On a singular time-fractional order wave equation with Bessel operator and Caputo derivative 
%J Journal of nonlinear sciences and its applications
%D 2017
%P 60-70
%V 10
%N 1
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.01.06/
%R 10.22436/jnsa.010.01.06
%G en
%F 10_22436_jnsa_010_01_06
Mesloub, Said; Bachar, Imed. On a singular time-fractional order wave equation with Bessel operator and Caputo derivative. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 1, p. 60-70. doi: 10.22436/jnsa.010.01.06

[1] Adomian, G. A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., Volume 135 (1988), pp. 501-544 | DOI

[2] Adomian, G. Solving frontier problems of physics: the decomposition method, With a preface by Yves Cherruault, Fundamental Theories of Physics, Kluwer Academic Publishers Group, Dordrecht, 1994 | DOI

[3] Alikhanov, A. A. A priori estimates for solutions of boundary value problems for fractional-order equations, Dier. Equ., Volume 46 (2010), pp. 660-666 | DOI | Zbl

[4] Debnath, L.; Bhatta, D. D. Solutions to few linear fractional inhomogeneous partial differential equations in fluid mechanics, Fract. Calc. Appl. Anal., Volume 7 (2004), pp. 21-36 | Zbl

[5] El-Sayed, A. M. A.; Gaber, M. The Adomian decomposition method for solving partial differential equations of fractal order in finite domains, Phys. Lett. A, Volume 359 (2006), pp. 175-182 | Zbl | DOI

[6] Engheta, N. On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas and Propagation, Volume 44 (1996), pp. 554-566 | Zbl | DOI

[7] Freed, A.; Diethelm, K.; Y. Luchko Fractional-order viscoelasticity (FOV): Constitutive development using the fractional calculus: First annual Report, NASA Technical Reports Server (NTRS), United States, 2002

[8] R. Gorenfo Abel integral equations with special emphasis on applications, Lectures in Mathematical Sciences, The University of Tokyo, Graduate School of Mathematical Sciences, 1996

[9] He, J. H. Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., Volume 15 (1999), pp. 86-90

[10] (Ed.), R. Hilfer Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000 | DOI

[11] Jafari, H.; Daftardar-Gejji, V. Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Appl. Math. Comput., Volume 180 (2006), pp. 488-497 | DOI

[12] Kaplan, T.; Gray, L. J.; Liu, S. H. Self-affine fractal model for a metal-electrolyte interface, Phys. Rev. B, Volume 35 (1987), pp. 5379-5381 | DOI

[13] Keighttey, A. M.; Myland, J. C.; Oldham, K. B.; Symons, P. G. Reversible cyclic voltammetry in the presence of product, J. Electroanal. Chem., Volume 322 (1992), pp. 25-54 | DOI

[14] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006

[15] Ladyzhenskaya, O. A. The boundary value problems of mathematical physics, Springer-VerlagTranslated from the Russian by Jack Lohwater [Arthur J. Lohwater], Applied Mathematical Sciences, , New York, 1985

[16] Mehaute, A. Le; Crepy, G. Introduction to transfer and motion in fractal media: the geometry of kinetics, Solid State Ion., Volume 9 (1983), pp. 17-30 | DOI

[17] Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, Volume 7 (1996), pp. 1461-1477 | DOI

[18] Mainardi, F. Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics, Udine, (1996), 291–348, CISM Courses and Lectures, Springer, Vienna, 1997 | DOI

[19] Mainardi, F. Fractional calculus and waves in linear viscoelasticity, An introduction to mathematical models. Imperial College Press, London, 2010 | DOI

[20] Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., Volume 4 (2001), pp. 153-192

[21] Mainardi, F.; P. Paradisi Fractional diffusive waves, J. Comput. Acoust., Volume 9 (2001), pp. 1417-1436 | DOI

[22] Mesloub, S.; Bouziani, A. On a class of singular hyperbolic equation with a weighted integral condition, Int. J. Math. Math. Sci., Volume 22 (1999), pp. 511-519

[23] Mesloub, S.; Mezhoudi, R.; Medjeden, M. A mixed problem for a parabolic equation of higher order with integral conditions, Bull. Polish Acad. Sci. Math., Volume 50 (2002), pp. 313-322

[24] Miller, K. S.; Ross, B. An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., , New York, 1993

[25] S. Momani An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simulation, Volume 70 (2005), pp. 110-118 | DOI

[26] Momani, S. Non-perturbative analytical solutions of the space- and time-fractional Burgers equations, Chaos Solitons Fractals, Volume 28 (2006), pp. 930-937 | DOI | Zbl

[27] Momani, S.; Qaralleh, R. Numerical approximations and Padé approximants for a fractional population growth model, Appl. Math. Model., Volume 31 (2007), pp. 1907-1914 | Zbl | DOI

[28] Momani, S.; N. Shawagfeh Decomposition method for solving fractional Riccati differential equations, Appl. Math. Comput., Volume 182 (2006), pp. 1083-1092 | Zbl | DOI

[29] Nigmatullin, R. The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Status Solidi B, Volume 133 (1986), pp. 425-430 | DOI

[30] Podlubny, I. Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999

[31] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional integrals and derivatives, Gordon and Breach Science PublishersTheory and applications, Edited and with a foreword by S. M. Nikolski˘ı, Translated from the 1987 Russian original, Revised by the authors, , Yverdon, 1993

Cité par Sources :