Ground state solutions for an asymptotically periodic and superlinear Schrodinger equation :
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1432-1439 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

We consider the semilinear Schrödinger equation

$ \begin{cases} -\Delta u + V(x)u= f(x,u) ,\,\,\,\,\, x\in R^N,\\ u\in H^1(R^N), \end{cases} $

where V (x) is asymptotically periodic and sign-changing, f(x; u) is a superlinear, subcritical nonlinearity. Under asymptotically periodic V (x) and a super-quadratic condition about f(x; u). We prove that the above problem has a ground state solution which minimizes the corresponding energy among all nontrivial solutions.

DOI : 10.22436/jnsa.009.04.03
Classification : 46E20, 35J10
Keywords: Schrödinger equation, ground state solutions, asymptotically periodic, sign-changing, super-quadratic condition.

Luo, Huxiao  1

1 School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, P. R. China
@article{10_22436_jnsa_009_04_03,
     author = {Luo, Huxiao},
     title = {Ground state solutions for an asymptotically periodic and superlinear {Schrodinger} equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1432-1439},
     year = {2016},
     volume = {9},
     number = {4},
     doi = {10.22436/jnsa.009.04.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.03/}
}
TY  - JOUR
AU  - Luo, Huxiao
TI  - Ground state solutions for an asymptotically periodic and superlinear Schrodinger equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1432
EP  - 1439
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.03/
DO  - 10.22436/jnsa.009.04.03
LA  - en
ID  - 10_22436_jnsa_009_04_03
ER  - 
%0 Journal Article
%A Luo, Huxiao
%T Ground state solutions for an asymptotically periodic and superlinear Schrodinger equation
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1432-1439
%V 9
%N 4
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.03/
%R 10.22436/jnsa.009.04.03
%G en
%F 10_22436_jnsa_009_04_03
Luo, Huxiao. Ground state solutions for an asymptotically periodic and superlinear Schrodinger equation. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1432-1439. doi: 10.22436/jnsa.009.04.03

[1] Edmunds, D. E.; Evans, W. D. Spectral Theory and Differential Operators, Oxford Clarendon Press, New York, 1987

[2] Egorov, Y.; V. Kondratiev On Spectral Theory of Elliptic Operators, Birkhäuser Verlag, Basel, 1996

[3] Ding, Y. Variational Methods for Strongly Indefinite Problems, World Scientific Publishing Co., Hackensack, 2007

[4] Ding, Y.; Lee, C. Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, Volume 222 (2006), pp. 137-163

[5] Ding, Y.; Szulkin, A. Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, Volume 29 (2007), pp. 397-419

[6] Kryszewski, W.; Suzlkin, A. Generalized linking theorem with an application to a semilinear Schrödinger equation , Adv. Differential Equations, Volume 3 (1998), pp. 441-472

[7] Li, G. B.; Szulkin, A. An asymptotically periodic Schrödinger equation with indefinite linear part, Commun Contemp Math., Volume 4 (2002), pp. 763-776

[8] Li, Y.; Wang, Z. Q.; Zeng, J. Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Liné aire, Volume 23 (2006), pp. 829-837

[9] Lin, X.; Tang, X. H. Semiclassical solutions of perturbed p-Laplacian equations with critical nonlinearity, J. Math. Anal. Appl., Volume 413 (2014), pp. 438-449

[10] Lin, X.; Tang, X. H. Nehari-type ground state solutions for superlinear asymptotically periodic Schrödinger equation, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7

[11] Lions, P. L. The concentration-compactness principle in the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984), pp. 223-283

[12] Liu, S. On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, Volume 45 (2012), pp. 1-9

[13] Pankov, A. Periodic nonlinear Schrödinger equations with application to photonic crystals, Milan. J. Math., Volume 73 (2005), pp. 259-287

[14] Pankov, A. Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan. J. Math., Volume 73 (2005), pp. 259-287

[15] Rabinowitz, P. H. On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., Volume 43 (1992), pp. 270-291

[16] Schechter, M. Superlinear Schrödinger operators, J. Funct Anal., Volume 262 (2012), pp. 2677-2694

[17] Szulkin, A.; Weth, T. Ground state solutions for some indefinite variational problems, J. Funct. Anal., Volume 257 (2009), pp. 3802-3822

[18] Tang, X. H. Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity , J. Math. Anal. Appl., Volume 401 (2013), pp. 407-415

[19] Tang, X. H. New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum, J. Math. Anal. Appl., Volume 413 (2014), pp. 392-410

[20] Tang, X. H. New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv. Nonlinear Stud., Volume 14 (2014), pp. 361-373

[21] X. H. Tang Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci China Math., Volume 58 (2015), pp. 715-728

[22] Troestler, C.; Willem, M. Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations, Volume 21 (1996), pp. 1431-1449

[23] Willem, M. Minimax Theorems, Brikhauser Boston, Boston, 1996

[24] Yang, M. Ground state solutions for a periodic periodic Schrödinger equation with superlinear nonlinearities, Nonlinear. Anal., Volume 72 (2010), pp. 2620-2627

Cité par Sources :