We consider the semilinear Schrödinger equation
| $ \begin{cases} -\Delta u + V(x)u= f(x,u) ,\,\,\,\,\, x\in R^N,\\ u\in H^1(R^N), \end{cases} $ |
Keywords: Schrödinger equation, ground state solutions, asymptotically periodic, sign-changing, super-quadratic condition.
Luo, Huxiao  1
@article{10_22436_jnsa_009_04_03,
author = {Luo, Huxiao},
title = {Ground state solutions for an asymptotically periodic and superlinear {Schrodinger} equation},
journal = {Journal of nonlinear sciences and its applications},
pages = {1432-1439},
year = {2016},
volume = {9},
number = {4},
doi = {10.22436/jnsa.009.04.03},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.03/}
}
TY - JOUR AU - Luo, Huxiao TI - Ground state solutions for an asymptotically periodic and superlinear Schrodinger equation JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 1432 EP - 1439 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.03/ DO - 10.22436/jnsa.009.04.03 LA - en ID - 10_22436_jnsa_009_04_03 ER -
%0 Journal Article %A Luo, Huxiao %T Ground state solutions for an asymptotically periodic and superlinear Schrodinger equation %J Journal of nonlinear sciences and its applications %D 2016 %P 1432-1439 %V 9 %N 4 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.03/ %R 10.22436/jnsa.009.04.03 %G en %F 10_22436_jnsa_009_04_03
Luo, Huxiao. Ground state solutions for an asymptotically periodic and superlinear Schrodinger equation. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1432-1439. doi: 10.22436/jnsa.009.04.03
[1] Spectral Theory and Differential Operators, Oxford Clarendon Press, New York, 1987
[2] On Spectral Theory of Elliptic Operators, Birkhäuser Verlag, Basel, 1996
[3] Variational Methods for Strongly Indefinite Problems, World Scientific Publishing Co., Hackensack, 2007
[4] Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, Volume 222 (2006), pp. 137-163
[5] Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, Volume 29 (2007), pp. 397-419
[6] Generalized linking theorem with an application to a semilinear Schrödinger equation , Adv. Differential Equations, Volume 3 (1998), pp. 441-472
[7] An asymptotically periodic Schrödinger equation with indefinite linear part, Commun Contemp Math., Volume 4 (2002), pp. 763-776
[8] Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Liné aire, Volume 23 (2006), pp. 829-837
[9] Semiclassical solutions of perturbed p-Laplacian equations with critical nonlinearity, J. Math. Anal. Appl., Volume 413 (2014), pp. 438-449
[10] Nehari-type ground state solutions for superlinear asymptotically periodic Schrödinger equation, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7
[11] The concentration-compactness principle in the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 1 (1984), pp. 223-283
[12] On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, Volume 45 (2012), pp. 1-9
[13] Periodic nonlinear Schrödinger equations with application to photonic crystals, Milan. J. Math., Volume 73 (2005), pp. 259-287
[14] Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan. J. Math., Volume 73 (2005), pp. 259-287
[15] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., Volume 43 (1992), pp. 270-291
[16] Superlinear Schrödinger operators, J. Funct Anal., Volume 262 (2012), pp. 2677-2694
[17] Ground state solutions for some indefinite variational problems, J. Funct. Anal., Volume 257 (2009), pp. 3802-3822
[18] Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity , J. Math. Anal. Appl., Volume 401 (2013), pp. 407-415
[19] New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum, J. Math. Anal. Appl., Volume 413 (2014), pp. 392-410
[20] New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv. Nonlinear Stud., Volume 14 (2014), pp. 361-373
[21] Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci China Math., Volume 58 (2015), pp. 715-728
[22] Nontrivial solution of a semilinear Schrödinger equation, Comm. Partial Differential Equations, Volume 21 (1996), pp. 1431-1449
[23] Minimax Theorems, Brikhauser Boston, Boston, 1996
[24] Ground state solutions for a periodic periodic Schrödinger equation with superlinear nonlinearities, Nonlinear. Anal., Volume 72 (2010), pp. 2620-2627
Cité par Sources :