The concept of rectangular b-metric space is introduced as a generalization of metric space, rectangular metric space and b-metric space. An analogue of Banach contraction principle and Kannan's fixed point theorem is proved in this space. Our result generalizes many known results in fixed point theory.
Keywords: Fixed points, b-metric space, rectangular metric space, rectangular b-metric space.
George, R.  1 ; Radenović, S.  2 ; Reshma, K. P.  3 ; Shukla, S.  4
@article{10_22436_jnsa_008_06_11,
author = {George, R. and Radenovi\'c, S. and Reshma, K. P. and Shukla, S.},
title = {Rectangular b-metric space and contraction principles},
journal = {Journal of nonlinear sciences and its applications},
pages = {1005-1013},
year = {2015},
volume = {8},
number = {6},
doi = {10.22436/jnsa.008.06.11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.11/}
}
TY - JOUR AU - George, R. AU - Radenović, S. AU - Reshma, K. P. AU - Shukla, S. TI - Rectangular b-metric space and contraction principles JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 1005 EP - 1013 VL - 8 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.11/ DO - 10.22436/jnsa.008.06.11 LA - en ID - 10_22436_jnsa_008_06_11 ER -
%0 Journal Article %A George, R. %A Radenović, S. %A Reshma, K. P. %A Shukla, S. %T Rectangular b-metric space and contraction principles %J Journal of nonlinear sciences and its applications %D 2015 %P 1005-1013 %V 8 %N 6 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.11/ %R 10.22436/jnsa.008.06.11 %G en %F 10_22436_jnsa_008_06_11
George, R.; Radenović, S.; Reshma, K. P.; Shukla, S. Rectangular b-metric space and contraction principles. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 1005-1013. doi: 10.22436/jnsa.008.06.11
[1] Locally convex valued rectangular metric spaces and Kannan's fixed point theorem, arXiv, Volume 2011 (2011), pp. 1-11
[2] A common fixed point for weak \(\phi\)-contractions on b-metric spaces, Fixed Point Theory, Volume 13 (2012), pp. 337-346
[3] Kannan Fixed Point Theorems on generalised metric spaces , J. Nonlinear Sci. Appl., Volume 2008 (1), pp. 45-48
[4] Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math., Volume 3 (2009), pp. 236-241
[5] The contraction mapping principle in quasimetric spaces , Funct. Anal., Unianowsk Gos. Ped. Inst., Volume 30 (1989), pp. 26-37
[6] Strict fixed point theorems for multivalued operators in b-metric spaces , Inter. J. Mod. Math., Volume 4 (2009), pp. 285-301
[7] Mutivalued fractals in b-metric spaces, Cen. Eur. J. Math., Volume 8 (2010), pp. 367-377
[8] On Ekeland's variational principle in b-metric spaces, Fixed Point Theory, Volume 12 (2011), pp. 21-28
[9] A fixed point theorem of Banach-Caccippoli type on a class of generalised metric spaces, Publ. Math. Debrecen, Volume 57 (2000), pp. 31-37
[10] Common fixed point theorem in complete generalized metric spaces, J. Appl. Math., Volume 2012 (2012), pp. 1-14
[11] Contraction mappings in b-metric spaces , Acta. Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[12] Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, Volume 46 (1998), pp. 263-276
[13] Round-off stability of iteration procedures for operators in b-metric spaces, J. Natur. Phys. Sci. , Volume 11 (1997), pp. 87-94
[14] Round-off stability of iteration procedures for set valued operators in b-metric spaces, J. Natur. Phys. Sci., Volume 15 (2001), pp. 1-8
[15] A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sci., Volume 9 (2002), pp. 29-33
[16] A fixed point theorem in generalized metric spaces , Soochow J. Math., Volume 33 (2007), pp. 33-39
[17] Fixed point of a Ljubomir Ciric's quasi-contraction mapping in a generalized metric space , Publ. Math. Debrecen, Volume 61 (2002), pp. 589-594
[18] Fixed Point of contractive mappings in generalised metric space, Math. Slovaca, Volume 59 (2009), pp. 499-504
[19] Fixed Points of (psi, phi) contractions on generalised metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12
[20] Some generalised results of fixed points in cone b-metric spaces , Math. Moravic., Volume 17 (2013), pp. 39-50
[21] Maps for which\( F(T) = F(T^n)\), Fixed Point Theory Appl., Volume 6 (2007), pp. 71-105
[22] The Kannan's fixed point theorem in cone rectangular metric space, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 161-167
[23] Fixed Points for (\(\psi,\phi\))-weakly contractive mapping in generalised metric spaces, Appl. Math. Lett., Volume 25 (2012), pp. 902-906
[24] Partial Metric Topology, Papers on general topology appl., Ann. New York Acad. Sci., Volume 728 (1994), pp. 183-197
[25] On Kannan fixed point result in generalised metric spaces, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 92-96
[26] Contractions over generalised metric spaces, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 180-182
Cité par Sources :