Pata-type common fixed point results in b-metric and b-rectangular metric spaces :
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 944-954 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

We obtain (common) fixed point results for mappings in b-metric and b-rectangular metric spaces, under the Pata-type conditions. In particular, we show that the results of paper Balasubramanian, [S. Balasubramanian, Math. Sci. (Springer) 8 (2014), no. 3, 65-69] can be obtained as consequences of more general results and in a much shorter way. We demonstrate these facts by some examples.

DOI : 10.22436/jnsa.008.06.05
Classification : 47H10, 54H25
Keywords: b-metric space, b-rectangular metric space, Pata-type condition.

Kadelburg, Zoran  1   ; Radenović, Stojan  2

1 University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Beograd, Serbia
2 Faculty of Mathematics and Information Technology Teacher Education, Dong Thap University, Cao Lanch City, Dong Thap Province, Viet Nam
@article{10_22436_jnsa_008_06_05,
     author = {Kadelburg, Zoran and Radenovi\'c, Stojan},
     title = {Pata-type common fixed point results in b-metric and b-rectangular metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {944-954},
     year = {2015},
     volume = {8},
     number = {6},
     doi = {10.22436/jnsa.008.06.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.05/}
}
TY  - JOUR
AU  - Kadelburg, Zoran
AU  - Radenović, Stojan
TI  - Pata-type common fixed point results in b-metric and b-rectangular metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 944
EP  - 954
VL  - 8
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.05/
DO  - 10.22436/jnsa.008.06.05
LA  - en
ID  - 10_22436_jnsa_008_06_05
ER  - 
%0 Journal Article
%A Kadelburg, Zoran
%A Radenović, Stojan
%T Pata-type common fixed point results in b-metric and b-rectangular metric spaces
%J Journal of nonlinear sciences and its applications
%D 2015
%P 944-954
%V 8
%N 6
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.05/
%R 10.22436/jnsa.008.06.05
%G en
%F 10_22436_jnsa_008_06_05
Kadelburg, Zoran; Radenović, Stojan. Pata-type common fixed point results in b-metric and b-rectangular metric spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 944-954. doi: 10.22436/jnsa.008.06.05

[1] Aghajani, A.; Abbas, M.; Roshan, J. R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, Volume 64 (2014), pp. 941-960

[2] Amini-Harandi, A. Fixed point theory for quasi-contraction maps in b-metric spaces, Fixed Point Theory, Volume 15 (2014), pp. 351-358

[3] Azam, A.; Mehmood, N.; Ahmad, J.; Radenović, S. Multivalued fixed point theorems in cone b-metric spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9

[4] Bakhtin, I. A. The contraction mapping principle in quasi-metric spaces [in Russian], Funk. An. Ulianowsk Gos. Ped. Inst., Volume 30 (1989), pp. 26-37

[5] Balasubramanian, S. A Pata-type fixed point theorem, Math. Sci., Volume 8 (2014), pp. 65-69

[6] Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 (2000), pp. 31-37

[7] Chakraborty, M.; Samanta, S. K. A fixed point theorem for Kannan-type maps in metric spaces, arXiv (2012), pp. 1-7

[8] Ćirić, L. B. A generalization of Banach's contraction principle , Proc. Amer. Math. Soc., Volume 45 (1974), pp. 267-273

[9] L. B. Ćirić Some Recent Results in Metrical Fixed Point Theory, Faculty of Mechanical Engineering, University of Belgrade, Belgrade, 2003

[10] Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[11] Bari, C. Di; Vetro, P. Common fixed points in generalized metric spaces, Appl. Math. Comput., Volume 218 (2012), pp. 7322-7325

[12] Eshaghi, M.; Mohseni, S.; Delavar, M. R.; Sen, M. De La; Kim, G. H.; Arian, A. Pata contractions and coupled type fixed points, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-10

[13] George, R.; Radenović, S.; Reshma, K. P.; Shukla, S. Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl. (in press)

[14] George, R.; Rajagopalan, R. Common fixed point results for \(\psi-\varphi\) contractions in rectangular metric spaces, Bull. Math. Anal. Appl., Volume 5 (2013), pp. 44-52

[15] Huang, L. G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476

[16] Hussain, N.; Dorić, D.; Kadelburg, Z.; Radenović, S. Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12

[17] Hussain, N.; Parvaneh, V.; Roshan, J. R.; Kadelburg, Z. Fixed points of cyclic (\(\psi-\varphi, L, A,B\))-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-18

[18] Jovanović, M.; Kadelburg, Z.; Radenović, S. Common fixed point results in metric type spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-15

[19] Jungck, G. Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci., Volume 4 (1996), pp. 199-215

[20] Kadelburg, Z.; Radenović, S. Fixed point and tripled fixed point theorems under Pata-type conditions in ordered metric space, Intern. J. Anal. Appl., Volume 6 (2014), pp. 113-122

[21] Kadelburg, Z.; Radenović, S. Fixed point results in generalized metric spaces without Hausdorff property, Math. Sci., Volume 8 (2014), pp. 1-8

[22] Kadelburg, Z.; Radenović, S. On generalized metric spaces: a survey, TWMS J. Pure Appl. Math., Volume 5 (2014), pp. 3-13

[23] Kadelburg, Z.; Radenović, S. Fixed point theorems for Pata-type maps in metric spaces, J. Egypt. Math.Soc. (in press)

[24] Kadelburg, Z.; Radenović, S. A note on Pata-type cyclic contractions, Sarajevo J. Math. (in press)

[25] Karapinar, E.; Du, Wei-Shih A note on b-cone metric and its related results: Generalizations or equivalence?, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-7

[26] Khamsi, M. A. Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-7

[27] Khamsi, M. A.; N. Hussain KKM mappings in metric type spaces, Nonlinear Anal., Volume 73 (2010), pp. 3123-3129

[28] Kirk, W.; Shahzad, W. Fixed Point Theory in Distance Spaces, Springer, cham, 2014

[29] Kumam, P.; Dung, N. V.; Hang, V. T. Le Some equivalences between cone b-metric spaces and b-metric spaces, Abstract Appl. Anal., Volume 2013 (2013), pp. 1-8

[30] Lahiri, B. K.; Das, P. Fixed point of a Ljubomir Ćirić's quasi-contraction mapping in generalized metric spaces, Publ. Math. Debrecen, Volume 61 (2002), pp. 589-594

[31] Rosa, V. La; Vetro, P. Common fixed points of \(\alpha-\psi-\varphi\)-contractions in generalized metric spaces, Nonlinear Anal. Model. Control, Volume 19 (2014), pp. 43-54

[32] Pata, V. A fixed point theorem in metric spaces, J. Fixed Point Theory Appl., Volume 10 (2011), pp. 299-305

[33] Popović, B.; Radenović, S.; S. Shukla Fixed point results to tvs-cone b-metric spaces, Gulf J. Math., Volume 1 (2013), pp. 51-64

[34] Roshan, J. R.; Hussain, N.; Parvaneh, V.; Kadelburg, Z. New fixed point results in b-generalized metric spaces , Nonlinear Anal. Model. Control. (submitted)

[35] Radenović, S.; Z. Kadelburg Quasi-contractions on symmetric and cone symmetric spaces, Banach J. Math. Anal., Volume 5 (2011), pp. 38-50

[36] Radenović, S.; Kadelburg, Z.; Jandrlić, D.; Jandrlić, A. Some results on weak contraction maps, Bull. Iranian Math. Soc., Volume 38 (2012), pp. 625-645

[37] Roshan, J. R.; Parvaneh, V.; Kadelburg, Z. Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 229-245

[38] B. Samet Discussion on `A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces' by A. Branciari , Publ. Math. Debrecen , Volume 76 (2010), pp. 493-494

[39] Sarma, I. R.; Rao, J. M.; S. S. Rao Contractions over generalized metric spaces , J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 180-182

[40] Shukla, S.; Balasubramanian, S.; Pavlović, M. A generalized Banach fixed point theorem, Bull. Malasiyan Math. Sci. Soc. (in press)

[41] Suzuki, T. Generalized metric spaces do not have the compatible topology, Abstract Appl. Anal., Volume 2014 (2014), pp. 1-5

[42] An, T. Van; Dung, N. Van; Kadelburg, Z.; Radenović, S. Various generalizations of metric spaces and fixed point theorems, Rev. Real Acad. Cienc. Exac., Fis. Nat., Ser. A, Math., Volume 109 (2015), pp. 175-198

Cité par Sources :