New common fixed point theorem for a family of non-self mappings in cone metric spaces :
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 387-401 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In this paper, we prove a common fixed point theorem for a family of non-self mappings satisfying generalized contraction condition of Ciric type in cone metric spaces (over the cone which is not necessarily normal). Our result generalizes and extends all the recent results related to non-self mappings in the setting of cone metric space.

DOI : 10.22436/jnsa.008.04.11
Classification : 47H10, 54H25
Keywords: Cone metric spaces, Common fixed point, Non-self mappings, Contraction condition of Ciric type.

Huang, Xianjiu  1   ; Lu, Xinxin  2   ; Wen, Xi  3

1 Department of Mathematics, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
2 Department of Mathematics, Nanchang University,, , ., Nanchang, 330031, Jiangxi, P. R. China
3 Department of Computer Sciences, Nanchang University, Nanchang, 330031, Jiangxi, P. R. China
@article{10_22436_jnsa_008_04_11,
     author = {Huang, Xianjiu and Lu, Xinxin and Wen, Xi},
     title = {New common fixed point theorem for a family of  non-self mappings in cone metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {387-401},
     year = {2015},
     volume = {8},
     number = {4},
     doi = {10.22436/jnsa.008.04.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.11/}
}
TY  - JOUR
AU  - Huang, Xianjiu
AU  - Lu, Xinxin
AU  - Wen, Xi
TI  - New common fixed point theorem for a family of  non-self mappings in cone metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 387
EP  - 401
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.11/
DO  - 10.22436/jnsa.008.04.11
LA  - en
ID  - 10_22436_jnsa_008_04_11
ER  - 
%0 Journal Article
%A Huang, Xianjiu
%A Lu, Xinxin
%A Wen, Xi
%T New common fixed point theorem for a family of  non-self mappings in cone metric spaces
%J Journal of nonlinear sciences and its applications
%D 2015
%P 387-401
%V 8
%N 4
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.11/
%R 10.22436/jnsa.008.04.11
%G en
%F 10_22436_jnsa_008_04_11
Huang, Xianjiu; Lu, Xinxin; Wen, Xi. New common fixed point theorem for a family of  non-self mappings in cone metric spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 387-401. doi: 10.22436/jnsa.008.04.11

[1] Abbas, M.; G. Jungck Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 416-420

[2] Abbas, M.; Rhoades, B. E. Fixed and periodic point results in cone metric spaces, Appl. Math. Letters, Volume 22 (2009), pp. 511-515

[3] N. A. Assad On a fixed point theorem of Kannan in Banach spaces, Tamkang J. Math., Volume 7 (1976), pp. 91-94

[4] Assad, N. A.; W. A. Kirk Fixed point theorems for set valued mappings of contractive type, Pacific J. Math., Volume 43 (1972), pp. 553-562

[5] Ciric, L. Non-self mappings satisfying non-linear contractive condition with applications, Nonlinear Anal., Volume 71 (2009), pp. 2927-2935

[6] Ciric, L.; Ume, J. Multi-valued non-self-mappings on convex metric spaces, Nonlinear Anal., Volume 60 (2005), pp. 1053-1063

[7] O. Hadzic On coincidence points in convex metric spaces , Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., Volume 19 (1989), pp. 233-240

[8] Hadzic, O.; Gajic, Lj. Coincidence points for set-valued mappings in convex metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., Volume 16 (1986), pp. 13-25

[9] Huang, L. G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476

[10] Huang, X. J.; Luo, J.; Zhu, C. X.; X. Wen Common fixed point theorem for two pairs of non-self-mappings satisfying generalized Ciric type contraction condition in cone metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-19

[11] Ilic, D.; Rakocevic, V. Common fixed points for maps on cone metric space, J. Math. Anal. Appl., Volume 341 (2008), pp. 876-882

[12] Imdad, M.; Kumar, S. Rhoades-type fixed-point theorems for a pair of nonself mappings, Comput. Math. Appl., Volume 46 (2003), pp. 919-927

[13] Itoh, S. Multivalued generalized contractions and fixed point theorems , Comment. Math. Univ. Carolinae, Volume 18 (1977), pp. 247-258

[14] Jungck, G.; Radenovic, S.; Radojevic, S.; Rakocevic, V. Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl., Volume 2009 (2009), pp. 1-13

[15] Jankovic, S.; Kadelburg, Z.; Radenovic, S.; Rhoades, B. E. Assad-Kirk-Type fixed point theorems for a pair of nonself mappings on cone metric spaces, Fixed Point Theory Appl., Volume 2009 (2009), pp. 1-16

[16] M. S. Khan Common fixed point theorems for multivalued mappings, Pacific J. Math., Volume 95 (1981), pp. 337-347

[17] Radenovic, S.; Rhoades, B. E. Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl., Volume 57 (2009), pp. 1701-1707

[18] Reich, S. Some remarks concerning contraction mappings, Canadian Math. Bull., Volume 14 (1971), pp. 121-124

[19] Rezapour, Sh. A review on topological properties of cone metric spaces, Analysis, Topology and Applications 2008, Vrnjacka Banja, Serbia, 2008

[20] Rezapour, Sh.; Hamlbarani, R. Some notes on the paper ''Cone metric spaces and fixed point theorems of contractive mappings'', J. Math. Anal. Appl., Volume 345 (2008), pp. 719-724

[21] Rhoades, B. E. A comparison of contractive definitions, Trans. Amer. Math. Soc., Volume 226 (1977), pp. 257-290

[22] Rhoades, B. E. A fixed point theorem for some non-self mappings, Math. Japonica. , Volume 23 (1978), pp. 457-459

[23] Rhoades, B. E. A fixed point theorem for non-self set-valued mappings, Internat. J. Math. Math. Sci., Volume 20 (1977), pp. 9-12

[24] Sumitra, R.; Uthariaraj, V.; Hemavathy, R.; P. Vijayaraju Common fixed point theorem for non-Self mappings satisfying generalized Ciric type contraction condition in cone metric space, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-17

[25] Vetro, P. Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo, Volume 56 (2007), pp. 464-468

[26] D. Wardowski Endpoints and fixed points of set-valued contractions in cone metric space , Nonlinear Anal., Volume 71 (2009), pp. 512-516

[27] Wong, Yau-Chueng; Ng, Kung-Fu Partially ordered topological vector spaces, Clarendon Press- Oxford, , 1973

Cité par Sources :