Local convergence of deformed Halley method in Banach space under Holder continuity conditions :
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 246-254 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

We present a local convergence analysis for deformed Halley method in order to approximate a solution of a nonlinear equation in a Banach space setting. Our methods include the Halley and other high order methods under hypotheses up to the first Fréchet-derivative in contrast to earlier studies using hypotheses up to the second or third Fréchet-derivative. The convergence ball and error estimates are given for these methods. Numerical examples are also provided in this study.

DOI : 10.22436/jnsa.008.03.09
Classification : 65D10, 65D99, 65G99, 47H17, 49M15
Keywords: Chebyshev method, Banach space, convergence ball, local convergence.

Argyros, Ioannis K.  1   ; George, Santhosh  2

1 Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
2 Department of Mathematical and Computational Sciences, NIT Karnataka, India-575 025
@article{10_22436_jnsa_008_03_09,
     author = {Argyros, Ioannis K. and George, Santhosh},
     title = {Local convergence of deformed {Halley} method in {Banach} space under {Holder} continuity  conditions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {246-254},
     year = {2015},
     volume = {8},
     number = {3},
     doi = {10.22436/jnsa.008.03.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.09/}
}
TY  - JOUR
AU  - Argyros, Ioannis K.
AU  - George, Santhosh
TI  - Local convergence of deformed Halley method in Banach space under Holder continuity  conditions
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 246
EP  - 254
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.09/
DO  - 10.22436/jnsa.008.03.09
LA  - en
ID  - 10_22436_jnsa_008_03_09
ER  - 
%0 Journal Article
%A Argyros, Ioannis K.
%A George, Santhosh
%T Local convergence of deformed Halley method in Banach space under Holder continuity  conditions
%J Journal of nonlinear sciences and its applications
%D 2015
%P 246-254
%V 8
%N 3
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.09/
%R 10.22436/jnsa.008.03.09
%G en
%F 10_22436_jnsa_008_03_09
Argyros, Ioannis K.; George, Santhosh. Local convergence of deformed Halley method in Banach space under Holder continuity  conditions. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 246-254. doi: 10.22436/jnsa.008.03.09

[1] Amat, S.; Busquier, S.; J. M. Gutiérrez Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., Volume 157 (2003), pp. 197-205

[2] Argyros, I. K. A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach spaces, J. Math. Anal. Appl., Volume 20 (2004), pp. 373-397

[3] Argyros, I. K. Computational theory of iterative methods, Series: Studies in Computational Mathematics, 15, Editors: C. K. Chui and L. Wuytack, Elsevier Publ. Co. , New York, U.S.A, 2007

[4] Argyros, I. K. Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc., Volume 32 (1985), pp. 275-292

[5] Argyros, I. K.; S. Hilout Numerical methods in Nonlinear Analysis, World Scientific Publ. Comp., New Jersey, 2013

[6] Argyros, I. K.; S. Hilout Weaker conditions for the convergence of Newton's method, J. Complexity, Volume 28 (2012), pp. 364-387

[7] Candela, V.; Marquina, A. Recurrence relations for rational cubic methods I: The Halley method, Computing, Volume 44 (1990), pp. 169-184

[8] Candela, V.; Marquina, A. Recurrence relations for rational cubic methods II: The Chebyshev method, Computing, Volume 45 (1990), pp. 355-367

[9] Chun, C.; Stanica, P.; B. Neta Third order family of methods in Banach spaces, Computer Math. Appl., Volume 61 (2011), pp. 1665-1675

[10] Gutiérrez, J. M.; Hernández, M. A. Recurrence relations for the super-Halley method, Computers Math. Appl., Volume 36 (1998), pp. 1-8

[11] Gutiérrez, J. M.; Hernández, M. A. Third-order iterative methods for operators with bounded second derivative, J. Comput. Appl. Math., Volume 82 (1997), pp. 171-183

[12] Hernández, M. A.; Salanova, M. A. Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, J. Comput. Appl. Math., Volume 126 (2000), pp. 131-143

[13] Hernández, M. A. Chebyshev's approximation algorithms and applications, Computers Math. Appl., Volume 41 (2001), pp. 433-455

[14] Kantorovich, L. V.; Akilov, G. P. Functional Analysis, Pergamon Press, Oxford, 1982

[15] Ortega, J. M.; Rheinboldt, W. C. Iterative Solution of Nonlinear Equations in Several Variables , Academic press, New York, 1970

[16] Parida, P. K.; Gupta, D. K. Recurrence relations for semi-local convergence of a Newton-like method in Banach spaces, J. Math. Anal. Appl., Volume 345 (2008), pp. 350-361

[17] Zhao, Y.; Wu, Q. Newton-Kantorovich theorem for a family of modified Halley's method under Holder continuity conditions in Banach space, Appl. Math. Comput., Volume 202 (2008), pp. 243-251

Cité par Sources :