Lower and upper solutions for a discrete first-order nonlocal problems at resonance :
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 174-183 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

We discuss the existence of solutions for the discrete first-order nonlocal problem

$ \begin{cases} \Delta u(t - 1) = f(t, u(t)),\quad t \in \{1, 2, ... , T\},\\ u(0) +\Sigma_{i=1}^m \alpha_iu(\xi_i) = 0, \end{cases} $

where $f : \{1,..., T\} \times \mathbb{R}\rightarrow \mathbb{R}$ is continuous, $T > 1$ is a fixed natural number, $\alpha_i \in (-\infty; 0],\, \xi_i \in \{1,...,T\}(i = 1,..., m; 1 \leq m \leq T; m \in \mathbb{N})$ are given constants such that $\Sigma_{i=1}^m \alpha_i+ 1 = 0$. We develop the methods of lower and upper solutions by the connectivity properties of the solution set of parameterized families of compact vector fields.

DOI : 10.22436/jnsa.008.03.01
Classification : 47H10, 54H25
Keywords: Coincidence point, first-order discrete nonlocal problem, contraction, lower and upper solutions, connected sets.

Wang, Faxing  1   ; Zheng, Ying  2

1 TongDa College of Nanjing University of Posts and Telecommunications, 225127 Yangzhou, China
2 College of Science, Nanjing University of Posts and Telecommunications, 210046 Nanjing, China
@article{10_22436_jnsa_008_03_01,
     author = {Wang, Faxing and Zheng, Ying},
     title = {Lower and upper solutions for a discrete first-order nonlocal problems at resonance},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {174-183},
     year = {2015},
     volume = {8},
     number = {3},
     doi = {10.22436/jnsa.008.03.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.01/}
}
TY  - JOUR
AU  - Wang, Faxing
AU  - Zheng, Ying
TI  - Lower and upper solutions for a discrete first-order nonlocal problems at resonance
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 174
EP  - 183
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.01/
DO  - 10.22436/jnsa.008.03.01
LA  - en
ID  - 10_22436_jnsa_008_03_01
ER  - 
%0 Journal Article
%A Wang, Faxing
%A Zheng, Ying
%T Lower and upper solutions for a discrete first-order nonlocal problems at resonance
%J Journal of nonlinear sciences and its applications
%D 2015
%P 174-183
%V 8
%N 3
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.03.01/
%R 10.22436/jnsa.008.03.01
%G en
%F 10_22436_jnsa_008_03_01
Wang, Faxing; Zheng, Ying. Lower and upper solutions for a discrete first-order nonlocal problems at resonance. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 3, p. 174-183. doi: 10.22436/jnsa.008.03.01

[1] Anderson, R. D. Existence of three solutions for a first-order problem with nonlinear nonlocal boundary conditions, J. Math. Anal. Appl., Volume 408 (2013), pp. 318-323

[2] Bai, D. Y.; Xu, Y. T. Nontrivial solutions of boundary value problems of second-order difference equations, J. Math. Anal. Appl., Volume 326 (2007), pp. 297-302

[3] Carlini, E.; F. J. A. Silva Fully Discrete Semi-Lagrangian Scheme for a First Order Mean Field Game Problem Carlinilly Discrete Semi-Lagrangian Scheme for a First Order Mean Field Game Problem, J. Numerical Anal., Volume 52 (2014), pp. 45-47

[4] Goodrich, S. C. On a first-order semipositone discrete fractional boundary value problem, Arch. Math. (Basel), Volume 99 (2012), pp. 509-518

[5] Henderson, J. Positive solutions for nonlinear difference equations, Nonlinear Stud., Volume 4 (1997), pp. 29-36

[6] Henderson, J.; Hompson, H. B. Thompson. Existence of multiple solutions for second-order discrete boundary value problems, Comput. Math. Appl., Volume 43 (2002), pp. 1239-1248

[7] Mawhin, J.; Fitzpatric, P. M. Topological degree and boundary value problem for nonlinear differential equations, Lecture Notes in Math., Volume 1537 (1991), pp. 74-172

[8] Nizhnik, L. Inverse spectral nonlocal problem for the first order ordinary differential equation, Archiv. der. Mathematik, Volume 99 (2012), pp. 509-518

[9] Ma, R. Y. Multiplicity results for a three-point boundary value problem at resonance, Nonlinear Anal., Volume 53 (2003), pp. 777-789

[10] Ma, R. Y. Existence and uniqueness of solutions to first-order three-point boundary value problems, Appl. Math. Letters, Volume 15 (2002), pp. 211-216

[11] Ma, R. Y. Multiplicity results for an m-point boundary value problem at resonance, Indian J. Math., Volume 47 (2005), pp. 15-31

[12] Mahmudov, E. Optimal control of Cauchy problem for first-order discrete and partial differential inclusions, J. Dyn. Control Syst., Volume 15 (2009), pp. 587-610

[13] Pang, H. H.; Feng, H. Y.; Ge, W. G. Multiple positive solutions of quasi-linear boundary value problems for finite difference equations , Appl. Math. Comput., Volume 197 (2008), pp. 451-456

[14] Wong, P. J. Y.; R. P. Agarwal Fixed-sign solutions of a system of higher order difference equations , J. Comput. Appl. Math., Volume 113 (2000), pp. 167-181

[15] Agarwal, R. P.; D. O'Regan Nontrivial solutions of boundary value problems of second-order difference equations, Nonlinear Anal., Volume 39 (2000), pp. 207-215

[16] Sun, J. P. Positive solution for first-order discrete periodic boundary value problem, Appl. Math. Letters, Volume 19 (2006), pp. 1244-1248

[17] Sun, J. P.; W. T. Li Existence of positive solutions of boundary value problem for a discrete difference system, Appl. Math. Comput., Volume 156 (2004), pp. 857-870

[18] Weng, P. X.; Guo, Z. H. Existence of Positive Solutions for BVP of Nonlinear Functional Difference Equation with p-Laplacian Operator, Acta Math. Sinica, Volume 1 (2006), pp. 187-194

Cité par Sources :