Coupled coincidence points for compatible mappings satisfying mixed monotone property :
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 104-114 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

We establish coupled coincidence and coupled fixed point results for a pair of mappings satisfying a compatibility hypothesis in partially ordered metric spaces. An example is given to illustrate our obtained results.

DOI : 10.22436/jnsa.005.02.04
Classification : 54H25, 47H10
Keywords: Compatible mappings, Coupled fixed point, mixed monotone property, partially ordered set

Nashine, Hemant Kumar  1   ; Samet, Bessem  2   ; Vetro, Calogero  3

1 Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg, Naradha, Mandir Hasaud, Raipur-492101(Chhattisgarh), India
2 Département de Mathématiques, Ecole Supérieure des Sciences et Techniques de Tunis, 5, avenue Taha Hussein-Tunis, B. P.:56, Bab Menara-1008, Tunisie
3 Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy
@article{10_22436_jnsa_005_02_04,
     author = {Nashine, Hemant Kumar and Samet, Bessem and Vetro, Calogero},
     title = {Coupled coincidence points for compatible mappings satisfying mixed monotone property},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {104-114},
     year = {2012},
     volume = {5},
     number = {2},
     doi = {10.22436/jnsa.005.02.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.04/}
}
TY  - JOUR
AU  - Nashine, Hemant Kumar
AU  - Samet, Bessem
AU  - Vetro, Calogero
TI  - Coupled coincidence points for compatible mappings satisfying mixed monotone property
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 104
EP  - 114
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.04/
DO  - 10.22436/jnsa.005.02.04
LA  - en
ID  - 10_22436_jnsa_005_02_04
ER  - 
%0 Journal Article
%A Nashine, Hemant Kumar
%A Samet, Bessem
%A Vetro, Calogero
%T Coupled coincidence points for compatible mappings satisfying mixed monotone property
%J Journal of nonlinear sciences and its applications
%D 2012
%P 104-114
%V 5
%N 2
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.04/
%R 10.22436/jnsa.005.02.04
%G en
%F 10_22436_jnsa_005_02_04
Nashine, Hemant Kumar; Samet, Bessem; Vetro, Calogero. Coupled coincidence points for compatible mappings satisfying mixed monotone property. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 104-114. doi: 10.22436/jnsa.005.02.04

[1] Agarwal, R. P.; El-Gebeily, M. A.; O'Regan, D. Generalized contractions in partially ordered metric spaces, Appl. Anal. , Volume 87 (2008), pp. 1-8

[2] Altun, I.; Simsek, H. Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl., Article ID 621492, Volume 2010 (2010), pp. 1-20

[3] Amini-Harandi, A.; Emami, H. A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. , Volume 72 (2010), pp. 2238-2242

[4] Bhaskar, T. G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. , Volume 65 (2006), pp. 1379-1393

[5] Choudhury, B.; Kundu, A. A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. , Volume 73 (2010), pp. 2524-2531

[6] Ćirić, Lj. B.; Cakić, N.; Rajović, M.; Ume, J. S. Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed point Theory Appl., Article ID 131294, Volume 2008 (2008), pp. 1-11

[7] Drici, Z.; McRae, F. A.; Devi, J. Vasundhara Fixed-point theorems in partially ordered metric spaces for operators with PPF dependence , Nonlinear Anal. , Volume 67 (2007), pp. 641-647

[8] Harjani, J.; Sadarangani, K. Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. , Volume 71 (2008), pp. 3403-3410

[9] Harjani, J.; Sadarangani, K. Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. , Volume 72 (2010), pp. 1188-1197

[10] Hussain, N.; Shah, M. H.; Kutbi, M. A. Coupled coincidence point theorems for nonlinear contractions in partially ordered quasi-metric spaces with a Q-function, Fixed point Theory Appl., Article ID 703938, Volume 2011 (2011), pp. 1-21

[11] Lakshmikantham, V.; Ćirić, Lj. B. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. , Volume 70 (2009), pp. 4341-4349

[12] Nashine, H. K.; Altun, I. Fixed point theorems for generalized weakly contractive condition in ordered metric spaces, Fixed point Theory Appl., Article ID 132367, Volume 2011 (2011), pp. 1-20

[13] Nashine, H. K.; Samet, B. Fixed point results for mappings satisfying (\(\psi,\varphi\))-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal. , Volume 74 (2011), pp. 2201-2209

[14] Nashine, H. K.; Samet, B.; Vetro, C. Monotone generalized nonlinear contractions and fixed point theorems in ordered metric spaces, Math. Comput. Modelling , Volume 54 (2011), pp. 712-720

[15] Nieto, J. J.; Lopez, R. R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order , Volume 22 (2005), pp. 223-239

[16] Nieto, J. J.; R. R. Lopez Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica, Engl. Ser. , Volume 23 (2007), pp. 2205-2212

[17] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. , Volume 132 (2004), pp. 1435-1443

[18] O'Regan, D.; A. Petrutel Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. , Volume 341 (2008), pp. 1241-1252

[19] Samet, B. Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. , Volume 72 (2010), pp. 4508-4517

[20] W. Shatanawi Partially ordered cone metric spaces and coupled fixed point results, Comput. Math. Appl., Volume 60 (2010), pp. 2508-2515

[21] Y. Wu New fixed point theorems and applications of mixed monotone operator, J. Math. Anal. Appl., Volume 341 (2008), pp. 883-893

[22] Wu, Y.; Liang, Z. Existence and uniqueness of fixed points for mixed monotone operators with applications, Nonlinear Anal. , Volume 65 (2006), pp. 1913-1924

Cité par Sources :