In this short note we apply certain iteration of the Janowski functions to estimate the integral means of some analytic and univalent mappings of $|z| 1$. Our method of proof follows an earlier one due to Leung [4].
Keywords: Integral means, iteration technique, analytic and univalent functions, Janowski functions.
BABALOLA, K. O.  1
@article{10_22436_jnsa_003_04_03,
author = {BABALOLA, K. O.},
title = {INTEGRAL {MEANS} {OF} {ANALYTIC} {MAPPINGS} {BY} {ITERATION} {OF} {JANOWSKI} {FUNCTIONS}},
journal = {Journal of nonlinear sciences and its applications},
pages = {256-260},
year = {2010},
volume = {3},
number = {4},
doi = {10.22436/jnsa.003.04.03},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.03/}
}
TY - JOUR AU - BABALOLA, K. O. TI - INTEGRAL MEANS OF ANALYTIC MAPPINGS BY ITERATION OF JANOWSKI FUNCTIONS JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 256 EP - 260 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.03/ DO - 10.22436/jnsa.003.04.03 LA - en ID - 10_22436_jnsa_003_04_03 ER -
%0 Journal Article %A BABALOLA, K. O. %T INTEGRAL MEANS OF ANALYTIC MAPPINGS BY ITERATION OF JANOWSKI FUNCTIONS %J Journal of nonlinear sciences and its applications %D 2010 %P 256-260 %V 3 %N 4 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.03/ %R 10.22436/jnsa.003.04.03 %G en %F 10_22436_jnsa_003_04_03
BABALOLA, K. O. INTEGRAL MEANS OF ANALYTIC MAPPINGS BY ITERATION OF JANOWSKI FUNCTIONS. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 256-260. doi: 10.22436/jnsa.003.04.03
[1] Iterated integral transforms of Caratheodory functions and their applications to analytic and univalent functions, Tamkang J. Math., Volume 37 (4) (2006), pp. 355-366
[2] Convex null sequence technique for analytic and univalent mappings of the unit disk, Tamkang J. Math., Volume 40 (2) (2009), pp. 201-209
[3] Integral means, univalent functions and circular symetrization, Acta Math., Volume 133 (1974), pp. 139-169
[4] Integral means of the derivatives of some univalent functions, Bull. London Math. Soc., Volume 11 (1979), pp. 289-294
[5] Subclasses of univalent functions, Lecture Notes in Math. Springer-Verlag, Berlin, Heidelberg and New York., Volume 1013 (1983), pp. 362-372
Cité par Sources :