In this paper, we prove weak and strong convergence of the Ishikawa iterative scheme with errors to common fixed point I-asymptotically quasi- nonexpansive mappings in a Banach space. The results obtained in this paper improve and generalize the corresponding results in the existing literature.
Keywords: I-asymptotically quasi-nonexpansive mapping, Ishikawa iterative schemes, convergence theorems.
TEMIR, SEYIT  1
@article{10_22436_jnsa_003_03_08,
author = {TEMIR, SEYIT},
title = { CONVERGENCE {THEOREMS} {OF} {A} {SCHEME} {WITH} {ERRORS} {FOR} {I-ASYMPTOTICALLY} {QUASI-NONEXPANSIVE} {MAPPINGS}},
journal = {Journal of nonlinear sciences and its applications},
pages = {222-233},
year = {2010},
volume = {3},
number = {3},
doi = {10.22436/jnsa.003.03.08},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.08/}
}
TY - JOUR AU - TEMIR, SEYIT TI - CONVERGENCE THEOREMS OF A SCHEME WITH ERRORS FOR I-ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 222 EP - 233 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.08/ DO - 10.22436/jnsa.003.03.08 LA - en ID - 10_22436_jnsa_003_03_08 ER -
%0 Journal Article %A TEMIR, SEYIT %T CONVERGENCE THEOREMS OF A SCHEME WITH ERRORS FOR I-ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS %J Journal of nonlinear sciences and its applications %D 2010 %P 222-233 %V 3 %N 3 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.08/ %R 10.22436/jnsa.003.03.08 %G en %F 10_22436_jnsa_003_03_08
TEMIR, SEYIT. CONVERGENCE THEOREMS OF A SCHEME WITH ERRORS FOR I-ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 3, p. 222-233. doi: 10.22436/jnsa.003.03.08
[1] Convergence of Ishikawa iterates of quasi-nonexpansive mappings , J. Math. Anal. Appl. , Volume 207 (1997), pp. 96-103
[2] A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174
[3] Fixed points by a new iteration method, Proc. Amer. Math. Soc., Volume 44 (1974), pp. 147-150
[4] Common fixed point iterative processes with errors for generalized asymptotically quasi-nonexpansive mappings, Computers and Math. with Applications, Volume 52 (2006), pp. 1403-1412
[5] Iterative sequences for asymptotically quasi-nonexpansive mappings with Error Member, J. Math. Anal. Appl., Volume 259 (2001), pp. 18-24
[6] Weak convergence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 591-597
[7] Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl., Volume 43 (1973), pp. 459-497
[8] Convergence theorems for I-nonexpansive mapping, IJMMS, Article ID 63435, Volume 2006 (2006), pp. 1-4
[9] Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bulletin of the Australian Mathematical Society, Volume 43 (1991), pp. 153-159
[10] Apprximating common fixed points of two asymptotically quasi-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications, Article ID18909, Volume 2006 (2006), pp. 1-10
[11] Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process, J. Math. Anal. Appl., Volume 178 (1993), pp. 301-308
[12] Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space, J. Math. Anal. Appl., Volume 329 (2007), pp. 759-765
[13] Strong convergence theorems for I-quasi-nonexpansive mappings, Far east J. Math.Sci.(FJMS), Volume 27 (1) (2007), pp. 111-119
Cité par Sources :