In [13] frames of subspaces extended to continuous version namely $c$-frame of subspaces. In this article we consider to the relations between $c$- frames of subspaces and local $c$-frames. Also in this article we give some important relation about duality and parseval $c$-frames of subspaces. .
Keywords: Operator, Hilbert space, Bessel sequences, Frame, frames of subspaces, c-frames of subspaces
Faroughi, Mohammad Hasan  1 ; Ahmadi, Reza  2 ; Afsar, Zahra   2
@article{10_22436_jnsa_001_03_04,
author = {Faroughi, Mohammad Hasan and Ahmadi, Reza and Afsar, Zahra },
title = {SOME {PROPERTIES} {OF} {\(C\)-FRAMES} {OF} {SUBSPACES}},
journal = {Journal of nonlinear sciences and its applications},
pages = {155-168},
year = {2008},
volume = {1},
number = {3},
doi = {10.22436/jnsa.001.03.04},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.04/}
}
TY - JOUR AU - Faroughi, Mohammad Hasan AU - Ahmadi, Reza AU - Afsar, Zahra TI - SOME PROPERTIES OF \(C\)-FRAMES OF SUBSPACES JO - Journal of nonlinear sciences and its applications PY - 2008 SP - 155 EP - 168 VL - 1 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.04/ DO - 10.22436/jnsa.001.03.04 LA - en ID - 10_22436_jnsa_001_03_04 ER -
%0 Journal Article %A Faroughi, Mohammad Hasan %A Ahmadi, Reza %A Afsar, Zahra %T SOME PROPERTIES OF \(C\)-FRAMES OF SUBSPACES %J Journal of nonlinear sciences and its applications %D 2008 %P 155-168 %V 1 %N 3 %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.04/ %R 10.22436/jnsa.001.03.04 %G en %F 10_22436_jnsa_001_03_04
Faroughi, Mohammad Hasan; Ahmadi, Reza; Afsar, Zahra . SOME PROPERTIES OF \(C\)-FRAMES OF SUBSPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 155-168. doi: 10.22436/jnsa.001.03.04
[1] Frame-Theoretic analysis of oversampled filter bank, IEEE Trans. Signal Processing. , Volume 46(12) (1998), pp. 3256-3268 | DOI
[2] Sigma-Delta quantization and finite frames, Acoustics, speech, and signal processing. proceeding., Volume 3(17-21) (2004), pp. 937-940 | DOI
[3] New tight frames of curvelets and optimal representation of objects with piecwise \(C^2\) singularities, Comm. Pure and App. Math. , Volume 57(2), (2004), pp. 219-266
[4] Frame of subspaces, Contemporery math., Volume 345(1) (2004), pp. 87-114
[5] Fusion frames and Distributed Processing , Appl. Comput. Harmon. Anal., 114-132, 2008 | DOI
[6] Equal-norm tight frames with erasures, Adv. Comput. Math., Volume 18(2-4) (2003), pp. 387-430 | DOI
[7] An introduction to frames and Riesz bases, Birkhauser, Boston , 2003 | DOI
[8] painless nonorthogonal Expansions, J. Math. Phys. , Volume 27(5) (1986), pp. 1271-1283 | DOI
[9] A class of nonharmonik Fourier series, Trans. Amer. Math. Soc., Volume 72(1) (1952), pp. 341-366
[10] Continuous frames in Hilbert spaces, Ann. physics , Volume 222(1) (1993), pp. 1-37 | DOI
[11] On the duality of fusion frames, J. math. Anal. Appl. , Volume 333 (2007), pp. 871-897 | DOI
[12] representation theory for high-rate multiple-antenna code design., IEEE Trans. Inform. Theory. , Volume 47(6) (2001), pp. 2335-2367 | DOI | Zbl
[13] Continuous and discrete frames of subspaces in Hilbert spaces. , Southeast Asian Bulletin of Mathematics. , Volume 32 (2008), pp. 305-324
[14] analysis now, Springer-Verlag, New York, 1989 | DOI
[15] Continuous frame in Hilbert spaces, Methods of Functional Analysis and Topology, Volume 12(2) (2006), pp. 170-182
Cité par Sources :