SOME PROPERTIES OF $C$-FRAMES OF SUBSPACES :
Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 155-168 Cet article a éte moissonné depuis la source International Scientific Research Publications

Voir la notice de l'article

In [13] frames of subspaces extended to continuous version namely $c$-frame of subspaces. In this article we consider to the relations between $c$- frames of subspaces and local $c$-frames. Also in this article we give some important relation about duality and parseval $c$-frames of subspaces. .

DOI : 10.22436/jnsa.001.03.04
Classification : 46B25, 47A05, 94A12, 68M10
Keywords: Operator, Hilbert space, Bessel sequences, Frame, frames of subspaces, c-frames of subspaces

Faroughi, Mohammad Hasan  1   ; Ahmadi, Reza  2   ; Afsar, Zahra   2

1 Faculty of Mathematical Science, University of Tabriz, Iran
2 Faculty of Mathematical Science, University of Tabriz, Iran
@article{10_22436_jnsa_001_03_04,
     author = {Faroughi, Mohammad Hasan and Ahmadi, Reza and Afsar, Zahra },
     title = {SOME {PROPERTIES} {OF} {\(C\)-FRAMES} {OF} {SUBSPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {155-168},
     year = {2008},
     volume = {1},
     number = {3},
     doi = {10.22436/jnsa.001.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.04/}
}
TY  - JOUR
AU  - Faroughi, Mohammad Hasan
AU  - Ahmadi, Reza
AU  - Afsar, Zahra 
TI  - SOME PROPERTIES OF \(C\)-FRAMES OF SUBSPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2008
SP  - 155
EP  - 168
VL  - 1
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.04/
DO  - 10.22436/jnsa.001.03.04
LA  - en
ID  - 10_22436_jnsa_001_03_04
ER  - 
%0 Journal Article
%A Faroughi, Mohammad Hasan
%A Ahmadi, Reza
%A Afsar, Zahra 
%T SOME PROPERTIES OF \(C\)-FRAMES OF SUBSPACES
%J Journal of nonlinear sciences and its applications
%D 2008
%P 155-168
%V 1
%N 3
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.001.03.04/
%R 10.22436/jnsa.001.03.04
%G en
%F 10_22436_jnsa_001_03_04
Faroughi, Mohammad Hasan; Ahmadi, Reza; Afsar, Zahra . SOME PROPERTIES OF \(C\)-FRAMES OF SUBSPACES. Journal of nonlinear sciences and its applications, Tome 1 (2008) no. 3, p. 155-168. doi: 10.22436/jnsa.001.03.04

[1] Blocsli, H.; Hlawatsch, F.; Fichtinger, H. G. Frame-Theoretic analysis of oversampled filter bank, IEEE Trans. Signal Processing. , Volume 46(12) (1998), pp. 3256-3268 | DOI

[2] Benedetto, J.; Powell, A.; O. Yilmaz Sigma-Delta quantization and finite frames, Acoustics, speech, and signal processing. proceeding., Volume 3(17-21) (2004), pp. 937-940 | DOI

[3] Candes, E. J.; D. L. Donoho New tight frames of curvelets and optimal representation of objects with piecwise \(C^2\) singularities, Comm. Pure and App. Math. , Volume 57(2), (2004), pp. 219-266

[4] Casazza, P. G.; G. Kutyniok Frame of subspaces, Contemporery math., Volume 345(1) (2004), pp. 87-114

[5] Casazza, P. G.; Kutyniok, G.; Li, S. Fusion frames and Distributed Processing , Appl. Comput. Harmon. Anal., 114-132, 2008 | DOI

[6] Casazza, P. G.; Kovacvic, J. Equal-norm tight frames with erasures, Adv. Comput. Math., Volume 18(2-4) (2003), pp. 387-430 | DOI

[7] Christensen, O. An introduction to frames and Riesz bases, Birkhauser, Boston , 2003 | DOI

[8] Daubechies, I.; Grossmann, A.; Meyer, Y. painless nonorthogonal Expansions, J. Math. Phys. , Volume 27(5) (1986), pp. 1271-1283 | DOI

[9] Duffin, R. J.; Schaeffer, A. C. A class of nonharmonik Fourier series, Trans. Amer. Math. Soc., Volume 72(1) (1952), pp. 341-366

[10] Ali, S.; Twareque; Antoine, J.-P. ; Gazeau, J.-P. Continuous frames in Hilbert spaces, Ann. physics , Volume 222(1) (1993), pp. 1-37 | DOI

[11] P. Găvrţa On the duality of fusion frames, J. math. Anal. Appl. , Volume 333 (2007), pp. 871-897 | DOI

[12] Hassibi, B.; Hochwald, B.; Shokrollahi, A.; Sweldens, W. representation theory for high-rate multiple-antenna code design., IEEE Trans. Inform. Theory. , Volume 47(6) (2001), pp. 2335-2367 | DOI | Zbl

[13] Najati, A.; Rahimi, R.; M. H. Faroughi Continuous and discrete frames of subspaces in Hilbert spaces. , Southeast Asian Bulletin of Mathematics. , Volume 32 (2008), pp. 305-324

[14] Pedersen; K. Gert . analysis now, Springer-Verlag, New York, 1989 | DOI

[15] Rahimi, A.; Najati, A.; Dehghan, Y. N. Continuous frame in Hilbert spaces, Methods of Functional Analysis and Topology, Volume 12(2) (2006), pp. 170-182

Cité par Sources :