We show that for all k, SL (2k + 1, ℤ) contains surface groups which are Zariski dense in SL (2k + 1, ℝ).
Long, D Darren  1 ; Thistlethwaite, Morwen B  2
@article{10_2140_gt_2024_28_1153,
author = {Long, D Darren and Thistlethwaite, Morwen B},
title = {Zariski dense surface groups in {SL(2k} + 1, {\ensuremath{\mathbb{Z}})}},
journal = {Geometry & topology},
pages = {1153--1166},
year = {2024},
volume = {28},
number = {3},
doi = {10.2140/gt.2024.28.1153},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1153/}
}
TY - JOUR AU - Long, D Darren AU - Thistlethwaite, Morwen B TI - Zariski dense surface groups in SL(2k + 1, ℤ) JO - Geometry & topology PY - 2024 SP - 1153 EP - 1166 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1153/ DO - 10.2140/gt.2024.28.1153 ID - 10_2140_gt_2024_28_1153 ER -
Long, D Darren; Thistlethwaite, Morwen B. Zariski dense surface groups in SL(2k + 1, ℤ). Geometry & topology, Tome 28 (2024) no. 3, pp. 1153-1166. doi: 10.2140/gt.2024.28.1153
[1] , , , Hitchin components for orbifolds, J. Eur. Math. Soc. 25 (2023) 1285 | DOI
[2] , Groups of integral representation type, Pacific J. Math. 86 (1980) 15 | DOI
[3] , , , Affine linear sieve, expanders, and sum-product, Invent. Math. 179 (2010) 559 | DOI
[4] , On the existence and uniqueness of the real logarithm of a matrix, Proc. Amer. Math. Soc. 17 (1966) 1146 | DOI
[5] , Zariski closure of positive and maximal representations, in preparation
[6] , Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI
[7] , , , Zariski dense surface subgroups in SL(3, Z), Geom. Topol. 15 (2011) 1 | DOI
[8] , , Zariski dense surface subgroups in SL(4, Z), Exp. Math. 27 (2018) 82 | DOI
[9] , , Zariski dense surface subgroups in SL(7, Z), computational output (2024)
[10] , On subgroups of GLn(Fp), Invent. Math. 88 (1987) 257 | DOI
[11] , Notes on thin matrix groups, from: "Thin groups and superstrong approximation" (editors E Breuillard, H Oh), Math. Sci. Res. Inst. Publ. 61, Cambridge Univ. Press (2014) 343
[12] , Group theory, I, 247, Springer (1982)
[13] , Strong approximation for Zariski-dense subgroups of semisimple algebraic groups, Ann. of Math. 120 (1984) 271 | DOI
[14] , Integral Zariski dense surface groups in SL(n, R), preprint (2022)
Cité par Sources :