Riemannian manifolds with entire Grauert tube are rationally elliptic
Geometry & topology, Tome 28 (2024) no. 3, pp. 1099-1112 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

It was conjectured by Bott, Grove and Halperin that a compact simply connected Riemannian manifold M with nonnegative sectional curvature is rationally elliptic. We confirm this conjecture under the stronger assumption that M has entire Grauert tube, ie M is a real-analytic Riemannian manifold that has a unique adapted complex structure defined on the whole tangent bundle TM. Our result also provides a strong topological obstruction to the existence of an entire Grauert tube.

DOI : 10.2140/gt.2024.28.1099
Keywords: entire Grauert tube, rationally ellipticity, nonnegative curvature

Chen, Xiaoyang  1

1 School of Mathematical Sciences, Key Laboratory of Intelligent Computing and Applications (Ministry of Education), Institute for Advanced Study, Tongji University, Shanghai, China
@article{10_2140_gt_2024_28_1099,
     author = {Chen, Xiaoyang},
     title = {Riemannian manifolds with entire {Grauert} tube are rationally elliptic},
     journal = {Geometry & topology},
     pages = {1099--1112},
     year = {2024},
     volume = {28},
     number = {3},
     doi = {10.2140/gt.2024.28.1099},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1099/}
}
TY  - JOUR
AU  - Chen, Xiaoyang
TI  - Riemannian manifolds with entire Grauert tube are rationally elliptic
JO  - Geometry & topology
PY  - 2024
SP  - 1099
EP  - 1112
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1099/
DO  - 10.2140/gt.2024.28.1099
ID  - 10_2140_gt_2024_28_1099
ER  - 
%0 Journal Article
%A Chen, Xiaoyang
%T Riemannian manifolds with entire Grauert tube are rationally elliptic
%J Geometry & topology
%D 2024
%P 1099-1112
%V 28
%N 3
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1099/
%R 10.2140/gt.2024.28.1099
%F 10_2140_gt_2024_28_1099
Chen, Xiaoyang. Riemannian manifolds with entire Grauert tube are rationally elliptic. Geometry & topology, Tome 28 (2024) no. 3, pp. 1099-1112. doi: 10.2140/gt.2024.28.1099

[1] R M Aguilar, Symplectic reduction and the homogeneous complex Monge–Ampère equation, Ann. Global Anal. Geom. 19 (2001) 327 | DOI

[2] M Berger, R Bott, Sur les variétés à courbure strictement positive, Topology 1 (1962) 301 | DOI

[3] D M Burns Jr., K K Leung, The complex Monge–Ampère equation, Zoll metrics and algebraization, Math. Ann. 371 (2018) 1 | DOI

[4] J Cheeger, D Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972) 413 | DOI

[5] Y Félix, S Halperin, J C Thomas, Rational homotopy theory, 205, Springer (2001) | DOI

[6] M Gromov, Homotopical effects of dilatation, J. Differential Geom. 13 (1978) 303

[7] K Grove, S Halperin, Contributions of rational homotopy theory to global problems in geometry, Inst. Hautes Études Sci. Publ. Math. 56 (1982) 171 | DOI

[8] K Grove, S Halperin, Dupin hypersurfaces, group actions and the double mapping cylinder, J. Differential Geom. 26 (1987) 429

[9] K Grove, B Wilking, J Yeager, Almost non-negative curvature and rational ellipticity in cohomogeneity two, Ann. Inst. Fourier (Grenoble) 69 (2019) 2921

[10] V Guillemin, M Stenzel, Grauert tubes and the homogeneous Monge–Ampère equation, J. Differential Geom. 34 (1991) 561

[11] P Koosis, Introduction to Hp spaces, 40, Cambridge Univ. Press (1980)

[12] L Lempert, R Szőke, Global solutions of the homogeneous complex Monge–Ampère equation and complex structures on the tangent bundle of Riemannian manifolds, Math. Ann. 290 (1991) 689 | DOI

[13] M Marcus, H Minc, A survey of matrix theory and matrix inequalities, Dover (2010)

[14] G P Paternain, Geodesic flows, 180, Birkhäuser (1999) | DOI

[15] D Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977) 269 | DOI

[16] R Szőke, Complex structures on tangent bundles of Riemannian manifolds, Math. Ann. 291 (1991) 409 | DOI

[17] B Totaro, Complexifications of nonnegatively curved manifolds, J. Eur. Math. Soc. 5 (2003) 69 | DOI

Cité par Sources :