Keywords: Gram-Schmidt method; Lorentz triangle; hyperbolic cosine formulas; Pedoe inequality; Lorentz matrix multiplication; orthogonal projection
@article{10_21136_MB_2024_0111_23,
author = {\c{C}oruh \c{S}enocak, Sevilay and Y\"uce, Salim},
title = {Geometric approaches to establish the fundamentals of {Lorentz} spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$},
journal = {Mathematica Bohemica},
pages = {549--567},
year = {2024},
volume = {149},
number = {4},
doi = {10.21136/MB.2024.0111-23},
mrnumber = {4840084},
zbl = {07980805},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0111-23/}
}
TY - JOUR
AU - Çoruh Şenocak, Sevilay
AU - Yüce, Salim
TI - Geometric approaches to establish the fundamentals of Lorentz spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$
JO - Mathematica Bohemica
PY - 2024
SP - 549
EP - 567
VL - 149
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0111-23/
DO - 10.21136/MB.2024.0111-23
LA - en
ID - 10_21136_MB_2024_0111_23
ER -
%0 Journal Article
%A Çoruh Şenocak, Sevilay
%A Yüce, Salim
%T Geometric approaches to establish the fundamentals of Lorentz spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$
%J Mathematica Bohemica
%D 2024
%P 549-567
%V 149
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0111-23/
%R 10.21136/MB.2024.0111-23
%G en
%F 10_21136_MB_2024_0111_23
Çoruh Şenocak, Sevilay; Yüce, Salim. Geometric approaches to establish the fundamentals of Lorentz spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 549-567. doi: 10.21136/MB.2024.0111-23
[1] Birman, G. S.: On $L^2$ and $L^3$. Elem. Math. 43 (1988), 46-50. | MR | JFM
[2] Birman, G. S.: Support functions and integral formulas in the Lorentzian plane. J. Geom. 72 (2001), 11-17. | DOI | MR | JFM
[3] Birman, G. S., Nomizu, K.: The Gauss-Bonnet theorem for 2-dimensional spacetimes. Mich. Math. J. 31 (1984), 77-81. | DOI | MR | JFM
[4] Birman, G. S., Nomizu, K.: Trigonometry in Lorentzian geometry. Am. Math. Mon. 91 (1984), 543-549. | DOI | MR | JFM
[5] Gündoğan, H., Keçilioğlu, O.: Lorentzian matrix multiplication and the motions on Lorentzian plane. Glas. Mat., III. Ser. 41 (2006), 329-334. | DOI | MR | JFM
[6] Keçilioğlu, O., Gündoğan, H.: Pseudo matrix multiplication. Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 66 (2017), 37-43. | DOI | MR | JFM
[7] López, R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space. Int. Electron. J. Geom. 7 (2014), 44-107. | DOI | MR | JFM
[8] Mitrinović, D. S., Pečarić, J. E.: About the Neuberg-Pedoe and the Oppenheim inequalities. J. Math. Anal. Appl. 129 (1988), 196-210. | DOI | MR | JFM
[9] Nešović, E.: Hyperbolic angle function in the Lorentzian plane. Kragujevac J. Math. 28 (2005), 139-144. | MR | JFM
[10] Nešović, E., Torgašev, M. Petrović: Some trigonometric relations in the Lorentzian plane. Kragujevac J. Math. 25 (2003), 219-225. | MR
[11] O'Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity. Pure and Applied Mathematics 103. Academic Press, New York (1983). | MR | JFM
[12] Pedoe, D.: Inside-outside: The Neuberg-Pedoe inequality. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976), 95-97. | MR
[13] Ratcliffe, J. G.: Hyperbolic $n$-manifolds. Foundations of Hyperbolic Manifolds Graduate Texts in Mathematics 149. Springer, New York (2006), 508-599. | DOI | MR | JFM
[14] Satnoianu, R., Janous, W., Donini, D.: A two-triangle inequality. Am. Math. Mon. 112 (2005), page 280. | DOI
[15] Yüce, S., Şenocak, S. Çoruh: A Comprehensive Insight Into Lorentzian Geometry. Pegem Academy Publishing Training and Consultancy Services Tic. Ltd. Şti., Ankara (2023).
[16] Yüce, S., Kuruoğlu, N.: Cauchy formulas for enveloping curves in the Lorentzian plane and Lorentzian kinematics. Result. Math. 54 (2009), 199-206. | DOI | MR | JFM
Cité par Sources :