Geometric approaches to establish the fundamentals of Lorentz spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$
Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 549-567
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to investigate the orthogonality of vectors to each other and the Gram-Schmidt method in the Minkowski space $\mathbb {R}_2^3$. Hyperbolic cosine formulas are given for all triangle types in the Minkowski plane $\mathbb {R}_1^2$. Moreover, the Pedoe inequality is explained for each type of triangle with the help of hyperbolic cosine formulas. Thus, the Pedoe inequality allowed us to establish a connection between two similar triangles in the Minkowski plane. In the continuation of the study, the rotation matrix that provides both point and axis rotation in the Minkowski plane is obtained by using the Lorentz matrix multiplication. Also, it is stated to be an orthogonal matrix. Moreover, the orthogonal projection formulas on the spacelike and timelike lines are given in the Minkowski plane. In addition, the distances of any point from the spacelike or timelike line \hbox {are formulated}.
The aim of this paper is to investigate the orthogonality of vectors to each other and the Gram-Schmidt method in the Minkowski space $\mathbb {R}_2^3$. Hyperbolic cosine formulas are given for all triangle types in the Minkowski plane $\mathbb {R}_1^2$. Moreover, the Pedoe inequality is explained for each type of triangle with the help of hyperbolic cosine formulas. Thus, the Pedoe inequality allowed us to establish a connection between two similar triangles in the Minkowski plane. In the continuation of the study, the rotation matrix that provides both point and axis rotation in the Minkowski plane is obtained by using the Lorentz matrix multiplication. Also, it is stated to be an orthogonal matrix. Moreover, the orthogonal projection formulas on the spacelike and timelike lines are given in the Minkowski plane. In addition, the distances of any point from the spacelike or timelike line \hbox {are formulated}.
DOI : 10.21136/MB.2024.0111-23
Classification : 53B30
Keywords: Gram-Schmidt method; Lorentz triangle; hyperbolic cosine formulas; Pedoe inequality; Lorentz matrix multiplication; orthogonal projection
@article{10_21136_MB_2024_0111_23,
     author = {\c{C}oruh \c{S}enocak, Sevilay and Y\"uce, Salim},
     title = {Geometric approaches to establish the fundamentals of {Lorentz} spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$},
     journal = {Mathematica Bohemica},
     pages = {549--567},
     year = {2024},
     volume = {149},
     number = {4},
     doi = {10.21136/MB.2024.0111-23},
     mrnumber = {4840084},
     zbl = {07980805},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0111-23/}
}
TY  - JOUR
AU  - Çoruh Şenocak, Sevilay
AU  - Yüce, Salim
TI  - Geometric approaches to establish the fundamentals of Lorentz spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$
JO  - Mathematica Bohemica
PY  - 2024
SP  - 549
EP  - 567
VL  - 149
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0111-23/
DO  - 10.21136/MB.2024.0111-23
LA  - en
ID  - 10_21136_MB_2024_0111_23
ER  - 
%0 Journal Article
%A Çoruh Şenocak, Sevilay
%A Yüce, Salim
%T Geometric approaches to establish the fundamentals of Lorentz spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$
%J Mathematica Bohemica
%D 2024
%P 549-567
%V 149
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0111-23/
%R 10.21136/MB.2024.0111-23
%G en
%F 10_21136_MB_2024_0111_23
Çoruh Şenocak, Sevilay; Yüce, Salim. Geometric approaches to establish the fundamentals of Lorentz spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 549-567. doi: 10.21136/MB.2024.0111-23

[1] Birman, G. S.: On $L^2$ and $L^3$. Elem. Math. 43 (1988), 46-50. | MR | JFM

[2] Birman, G. S.: Support functions and integral formulas in the Lorentzian plane. J. Geom. 72 (2001), 11-17. | DOI | MR | JFM

[3] Birman, G. S., Nomizu, K.: The Gauss-Bonnet theorem for 2-dimensional spacetimes. Mich. Math. J. 31 (1984), 77-81. | DOI | MR | JFM

[4] Birman, G. S., Nomizu, K.: Trigonometry in Lorentzian geometry. Am. Math. Mon. 91 (1984), 543-549. | DOI | MR | JFM

[5] Gündoğan, H., Keçilioğlu, O.: Lorentzian matrix multiplication and the motions on Lorentzian plane. Glas. Mat., III. Ser. 41 (2006), 329-334. | DOI | MR | JFM

[6] Keçilioğlu, O., Gündoğan, H.: Pseudo matrix multiplication. Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 66 (2017), 37-43. | DOI | MR | JFM

[7] López, R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space. Int. Electron. J. Geom. 7 (2014), 44-107. | DOI | MR | JFM

[8] Mitrinović, D. S., Pečarić, J. E.: About the Neuberg-Pedoe and the Oppenheim inequalities. J. Math. Anal. Appl. 129 (1988), 196-210. | DOI | MR | JFM

[9] Nešović, E.: Hyperbolic angle function in the Lorentzian plane. Kragujevac J. Math. 28 (2005), 139-144. | MR | JFM

[10] Nešović, E., Torgašev, M. Petrović: Some trigonometric relations in the Lorentzian plane. Kragujevac J. Math. 25 (2003), 219-225. | MR

[11] O'Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity. Pure and Applied Mathematics 103. Academic Press, New York (1983). | MR | JFM

[12] Pedoe, D.: Inside-outside: The Neuberg-Pedoe inequality. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976), 95-97. | MR

[13] Ratcliffe, J. G.: Hyperbolic $n$-manifolds. Foundations of Hyperbolic Manifolds Graduate Texts in Mathematics 149. Springer, New York (2006), 508-599. | DOI | MR | JFM

[14] Satnoianu, R., Janous, W., Donini, D.: A two-triangle inequality. Am. Math. Mon. 112 (2005), page 280. | DOI

[15] Yüce, S., Şenocak, S. Çoruh: A Comprehensive Insight Into Lorentzian Geometry. Pegem Academy Publishing Training and Consultancy Services Tic. Ltd. Şti., Ankara (2023).

[16] Yüce, S., Kuruoğlu, N.: Cauchy formulas for enveloping curves in the Lorentzian plane and Lorentzian kinematics. Result. Math. 54 (2009), 199-206. | DOI | MR | JFM

Cité par Sources :