Generalized derivations with power values on rings and Banach algebras
Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 491-502 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a prime ring and $I$ a nonzero ideal of $R.$ The purpose of this paper is to classify generalized derivations of $R$ satisfying some algebraic identities with power values on $I.$ More precisely, we consider two generalized derivations $F$ and $H$ of $R$ satisfying one of the following identities: \begin {itemize} \item [(1)] $aF(x)^mH(y)^m=x^ny^n$ for all $x,y \in I,$ \item [(2)] $ (F(x)\circ H(y))^m=(x\circ y)^n$ for all $x,y \in I,$ \end {itemize} for two fixed positive integers $m\geq 1$, $n\geq 1$ and $a$ an element of the extended centroid of $R$. Finally, as an application, the same identities are studied locally on nonvoid open subsets of a prime Banach algebra.
Let $R$ be a prime ring and $I$ a nonzero ideal of $R.$ The purpose of this paper is to classify generalized derivations of $R$ satisfying some algebraic identities with power values on $I.$ More precisely, we consider two generalized derivations $F$ and $H$ of $R$ satisfying one of the following identities: \begin {itemize} \item [(1)] $aF(x)^mH(y)^m=x^ny^n$ for all $x,y \in I,$ \item [(2)] $ (F(x)\circ H(y))^m=(x\circ y)^n$ for all $x,y \in I,$ \end {itemize} for two fixed positive integers $m\geq 1$, $n\geq 1$ and $a$ an element of the extended centroid of $R$. Finally, as an application, the same identities are studied locally on nonvoid open subsets of a prime Banach algebra.
DOI : 10.21136/MB.2024.0079-23
Classification : 16N60, 16W25, 46J10
Keywords: prime ring; generalized derivation; Banach algebra; Jacobson radical
@article{10_21136_MB_2024_0079_23,
     author = {Hermas, Abderrahman and Mamouni, Abdellah and Oukhtite, Lahcen},
     title = {Generalized derivations with power values on rings and {Banach} algebras},
     journal = {Mathematica Bohemica},
     pages = {491--502},
     year = {2024},
     volume = {149},
     number = {4},
     doi = {10.21136/MB.2024.0079-23},
     mrnumber = {4840081},
     zbl = {07980802},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0079-23/}
}
TY  - JOUR
AU  - Hermas, Abderrahman
AU  - Mamouni, Abdellah
AU  - Oukhtite, Lahcen
TI  - Generalized derivations with power values on rings and Banach algebras
JO  - Mathematica Bohemica
PY  - 2024
SP  - 491
EP  - 502
VL  - 149
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0079-23/
DO  - 10.21136/MB.2024.0079-23
LA  - en
ID  - 10_21136_MB_2024_0079_23
ER  - 
%0 Journal Article
%A Hermas, Abderrahman
%A Mamouni, Abdellah
%A Oukhtite, Lahcen
%T Generalized derivations with power values on rings and Banach algebras
%J Mathematica Bohemica
%D 2024
%P 491-502
%V 149
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0079-23/
%R 10.21136/MB.2024.0079-23
%G en
%F 10_21136_MB_2024_0079_23
Hermas, Abderrahman; Mamouni, Abdellah; Oukhtite, Lahcen. Generalized derivations with power values on rings and Banach algebras. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 491-502. doi: 10.21136/MB.2024.0079-23

Cité par Sources :