Generalized derivations with power values on rings and Banach algebras
Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 491-502
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be a prime ring and $I$ a nonzero ideal of $R.$ The purpose of this paper is to classify generalized derivations of $R$ satisfying some algebraic identities with power values on $I.$ More precisely, we consider two generalized derivations $F$ and $H$ of $R$ satisfying one of the following identities: \begin {itemize} \item [(1)] $aF(x)^mH(y)^m=x^ny^n$ for all $x,y \in I,$ \item [(2)] $ (F(x)\circ H(y))^m=(x\circ y)^n$ for all $x,y \in I,$ \end {itemize} for two fixed positive integers $m\geq 1$, $n\geq 1$ and $a$ an element of the extended centroid of $R$. Finally, as an application, the same identities are studied locally on nonvoid open subsets of a prime Banach algebra.
Let $R$ be a prime ring and $I$ a nonzero ideal of $R.$ The purpose of this paper is to classify generalized derivations of $R$ satisfying some algebraic identities with power values on $I.$ More precisely, we consider two generalized derivations $F$ and $H$ of $R$ satisfying one of the following identities: \begin {itemize} \item [(1)] $aF(x)^mH(y)^m=x^ny^n$ for all $x,y \in I,$ \item [(2)] $ (F(x)\circ H(y))^m=(x\circ y)^n$ for all $x,y \in I,$ \end {itemize} for two fixed positive integers $m\geq 1$, $n\geq 1$ and $a$ an element of the extended centroid of $R$. Finally, as an application, the same identities are studied locally on nonvoid open subsets of a prime Banach algebra.
DOI :
10.21136/MB.2024.0079-23
Classification :
16N60, 16W25, 46J10
Keywords: prime ring; generalized derivation; Banach algebra; Jacobson radical
Keywords: prime ring; generalized derivation; Banach algebra; Jacobson radical
@article{10_21136_MB_2024_0079_23,
author = {Hermas, Abderrahman and Mamouni, Abdellah and Oukhtite, Lahcen},
title = {Generalized derivations with power values on rings and {Banach} algebras},
journal = {Mathematica Bohemica},
pages = {491--502},
year = {2024},
volume = {149},
number = {4},
doi = {10.21136/MB.2024.0079-23},
mrnumber = {4840081},
zbl = {07980802},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0079-23/}
}
TY - JOUR AU - Hermas, Abderrahman AU - Mamouni, Abdellah AU - Oukhtite, Lahcen TI - Generalized derivations with power values on rings and Banach algebras JO - Mathematica Bohemica PY - 2024 SP - 491 EP - 502 VL - 149 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0079-23/ DO - 10.21136/MB.2024.0079-23 LA - en ID - 10_21136_MB_2024_0079_23 ER -
%0 Journal Article %A Hermas, Abderrahman %A Mamouni, Abdellah %A Oukhtite, Lahcen %T Generalized derivations with power values on rings and Banach algebras %J Mathematica Bohemica %D 2024 %P 491-502 %V 149 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0079-23/ %R 10.21136/MB.2024.0079-23 %G en %F 10_21136_MB_2024_0079_23
Hermas, Abderrahman; Mamouni, Abdellah; Oukhtite, Lahcen. Generalized derivations with power values on rings and Banach algebras. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 491-502. doi: 10.21136/MB.2024.0079-23
Cité par Sources :