Cauchy problem with Denjoy-Stieltjes integral
Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 471-490
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This work is devoted to analyzing the existence of the Cauchy fractional-type problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral sense) of real order $n\geq 1$. These kinds of equations are a generalization of the measure differential equations. Our results extend A. A. Kilbas, H. M. Srivastava, J. J. Trujillo (2006) and H. Zhou, G. Ye, W. Liu, O. Wang (2015).
This work is devoted to analyzing the existence of the Cauchy fractional-type problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral sense) of real order $n\geq 1$. These kinds of equations are a generalization of the measure differential equations. Our results extend A. A. Kilbas, H. M. Srivastava, J. J. Trujillo (2006) and H. Zhou, G. Ye, W. Liu, O. Wang (2015).
DOI : 10.21136/MB.2024.0072-22
Classification : 26A39, 26A42, 34A08, 34A12
Keywords: fractional measure differential equation; Cauchy problem; Riemann-Liouville fractional integral and derivative; distributional Denjoy integral
@article{10_21136_MB_2024_0072_22,
     author = {Morales Mac{\'\i}as, Mar{\'\i}a Guadalupe},
     title = {Cauchy problem with {Denjoy-Stieltjes} integral},
     journal = {Mathematica Bohemica},
     pages = {471--490},
     year = {2024},
     volume = {149},
     number = {4},
     doi = {10.21136/MB.2024.0072-22},
     mrnumber = {4840080},
     zbl = {07980801},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0072-22/}
}
TY  - JOUR
AU  - Morales Macías, María Guadalupe
TI  - Cauchy problem with Denjoy-Stieltjes integral
JO  - Mathematica Bohemica
PY  - 2024
SP  - 471
EP  - 490
VL  - 149
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0072-22/
DO  - 10.21136/MB.2024.0072-22
LA  - en
ID  - 10_21136_MB_2024_0072_22
ER  - 
%0 Journal Article
%A Morales Macías, María Guadalupe
%T Cauchy problem with Denjoy-Stieltjes integral
%J Mathematica Bohemica
%D 2024
%P 471-490
%V 149
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0072-22/
%R 10.21136/MB.2024.0072-22
%G en
%F 10_21136_MB_2024_0072_22
Morales Macías, María Guadalupe. Cauchy problem with Denjoy-Stieltjes integral. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 471-490. doi: 10.21136/MB.2024.0072-22

[1] Ang, D. D., Schmitt, K., Vy, L. K.: A multidimensional analogue of the Denjoy-Perron-Henstock-Kurzweil integral. Bull. Belg. Math. Soc. - Simon Stevin 4 (1997), 355-371. | DOI | MR | JFM

[2] Atangana, A.: Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties. Physica A 505 (2018), 688-706. | DOI | MR | JFM

[3] Atangana, A., Gómez-Aguilar, J. F.: Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133 (2018), Article ID 133, 22 pages. | DOI

[4] Atangana, A., Gómez-Aguilar, J. F.: Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu. Numer. Methods Partial Differ. Equations 34 (2018), 1502-1523. | DOI | MR | JFM

[5] Atangana, A., Qureshi, S.: Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals 123 (2019), 320-337. | DOI | MR | JFM

[6] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos 3. World Scientific, Hackensack (2012). | DOI | MR | JFM

[7] Barrett, J. H.: Differential equations of non-integer order. Can. J. Math. 6 (1954), 529-541. | DOI | MR | JFM

[8] Bongiorno, B.: Relatively weakly compact sets in the Denjoy space. J. Math. Study 27 (1994), 37-44. | MR | JFM

[9] Bongiorno, B., Panchapagesan, T. V.: On the Alexiewicz topology of the Denjoy space. Real Anal. Exch. 21 (1995/96), 604-614. | DOI | MR | JFM

[10] Bonotto, E. M., Federson, M., Muldowney, P.: A Feynman-Kac solution to a random impulsive equation of Schrödinger type. Real Anal. Exch. 36 (2010/11), 107-148. | DOI | MR | JFM

[11] Carothers, N. L.: Real Analysis. Cambridge University Press, Cambridge (2000). | DOI | MR | JFM

[12] Chew, T. S., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals. Differ. Integral Equ. 4 (1991), 861-868. | DOI | MR | JFM

[13] Das, P. C., Sharma, R. R.: On optimal controls for measure delay-differential equations. SIAM. J. Control 9 (1971), 43-61. | DOI | MR | JFM

[14] Das, P. C., Sharma, R. R.: Existence and stability of measure differential equations. Czech. Math. J. 22 (1972), 145-158. | DOI | MR | JFM

[15] Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics 2004. Springer, Berlin (2010). | DOI | MR | JFM

[16] Diethelm, K., Freed, A. D.: On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. Scientific Computing in Chemical Engineering II Springer, Berlin (1999). | DOI

[17] Duistermaat, J. J., Kolk, J. A. C.: Distributions: Theory and Applications. Cornerstones. Birkhäuser, Boston (2010). | DOI | MR | JFM

[18] Gómez-Aguilar, J. F., Atangana, A.: New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132 (2017), Article ID 13, 21 pages. | DOI

[19] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM

[20] Hayek, N., Trujillo, J., Rivero, M., Bonilla, B., Moreno, J. C.: An extension of Picard-Lindelöff theorem to fractional differential equations. Appl. Anal. 70 (1999), 347-361. | DOI | MR | JFM

[21] (ed.), R. Hilfer: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). | DOI | MR | JFM

[22] Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis. Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1990). | DOI | MR | JFM

[23] Kilbas, A. A., Bonilla, B., Trujillo, J. J.: Existence and uniqueness theorems for nonlinear fractional differential equations. Demonstr. Math. 33 (2000), 583-602. | DOI | MR | JFM

[24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). | DOI | MR | JFM

[25] Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D.: The Kurzweil integral in financial market modeling. Math. Bohem. 141 (2016), 261-286. | DOI | MR | JFM

[26] Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures 378. Springer, Vienna (1997), 291-348. | DOI | MR

[27] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York (1993). | MR | JFM

[28] Monteiro, G. A., Satco, B.: Distributional, differential and integral problems: Equivalence and existence results. Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 7, 26 pages. | DOI | MR | JFM

[29] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Singapore (2019). | DOI | MR | JFM

[30] Morales, M. G., Došlá, Z.: Weighted Cauchy problem: Fractional versus integer order. J. Integral Equations Appl. 33 (2021), 497-509. | DOI | MR | JFM

[31] Morales, M. G., Došlá, Z., Mendoza, F. J.: Riemann-Liouville derivative over the space of integrable distributions. Electron Res. Arch. 28 (2020), 567-587. | DOI | MR | JFM

[32] Morita, T., Sato, K.: Solution of fractional differential equation in terms of distribution theory. Interdiscip. Inf. Sci. 12 (2006), 71-83. | DOI | MR | JFM

[33] Muldowney, P.: Feynman's path integrals and Henstock's non-absolute integration. J. Appl. Anal. 6 (2000), 1-24. | DOI | MR | JFM

[34] Pskhu, A. V.: Initial-value problem for a linear ordinary differential equation of noninteger order. Sb. Math. 202 (2011), 571-582. | DOI | MR | JFM

[35] Sabatier, J., Agrawal, O. P., (eds.), J. A. T. Machado: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007). | DOI | MR | JFM

[36] Salem, A. H. H., Cichoń, M.: On solutions of fractional order boundary value problems with integral boundary conditions in Banach spaces. J. Funct. Spaces Appl. 2013 (2013), Article ID 428094, 13 pages. | DOI | MR | JFM

[37] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993). | MR | JFM

[38] Schmaedeke, W. W.: Optimal control theory for nonlinear vector differential equations containing measures. J. SIAM Control, Ser. A 3 (1965), 231-280. | DOI | MR | JFM

[39] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific, Singapore (1992). | DOI | MR | JFM

[40] Smart, D. R.: Fixed Point Theorems. Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980). | MR | JFM

[41] Talvila, E.: The distributional Denjoy integral. Real Anal. Exch. 33 (2007/08), 51-82. | DOI | MR | JFM

[42] Talvila, E.: Convolutions with the continuous primitive integral. Abstr. Appl. Anal. 2009 (2009), Article ID 307404, 18 pages. | DOI | MR | JFM

[43] Xu, Y. T.: Functional Differential Equations and Measure Differential Equations. Zhongshan University Press, Guangzhou (1988), Chinese.

[44] Ye, G., Liu, W.: The distributional Henstock-Kurzweil integral and applications. Monatsh. Math. 181 (2016), 975-989. | DOI | MR | JFM

[45] Ye, G., Liu, W.: The distributional Henstock-Kurzweil integral and applications: A survey. J. Math. Study 49 (2016), 433-448. | DOI | MR | JFM

[46] Ye, G., Zhang, M., Liu, E., Zhao, D.: Existence and uniqueness of solutions to distributional differential equations involving Henstock-Kurzweil-Stieltjes integrals. Rev. Unión Mat. Argent. 60 (2019), 443-458. | DOI | MR | JFM

[47] Zhou, H., Ye, G., Liu, W., Wang, O.: The distributional Henstock-Kurzweil integral and measure differential equations. Bull. Iran. Math. Soc. 41 (2015), 363-374. | MR | JFM

Cité par Sources :