Keywords: fractional measure differential equation; Cauchy problem; Riemann-Liouville fractional integral and derivative; distributional Denjoy integral
@article{10_21136_MB_2024_0072_22,
author = {Morales Mac{\'\i}as, Mar{\'\i}a Guadalupe},
title = {Cauchy problem with {Denjoy-Stieltjes} integral},
journal = {Mathematica Bohemica},
pages = {471--490},
year = {2024},
volume = {149},
number = {4},
doi = {10.21136/MB.2024.0072-22},
mrnumber = {4840080},
zbl = {07980801},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0072-22/}
}
TY - JOUR AU - Morales Macías, María Guadalupe TI - Cauchy problem with Denjoy-Stieltjes integral JO - Mathematica Bohemica PY - 2024 SP - 471 EP - 490 VL - 149 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0072-22/ DO - 10.21136/MB.2024.0072-22 LA - en ID - 10_21136_MB_2024_0072_22 ER -
Morales Macías, María Guadalupe. Cauchy problem with Denjoy-Stieltjes integral. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 471-490. doi: 10.21136/MB.2024.0072-22
[1] Ang, D. D., Schmitt, K., Vy, L. K.: A multidimensional analogue of the Denjoy-Perron-Henstock-Kurzweil integral. Bull. Belg. Math. Soc. - Simon Stevin 4 (1997), 355-371. | DOI | MR | JFM
[2] Atangana, A.: Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties. Physica A 505 (2018), 688-706. | DOI | MR | JFM
[3] Atangana, A., Gómez-Aguilar, J. F.: Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133 (2018), Article ID 133, 22 pages. | DOI
[4] Atangana, A., Gómez-Aguilar, J. F.: Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu. Numer. Methods Partial Differ. Equations 34 (2018), 1502-1523. | DOI | MR | JFM
[5] Atangana, A., Qureshi, S.: Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals 123 (2019), 320-337. | DOI | MR | JFM
[6] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos 3. World Scientific, Hackensack (2012). | DOI | MR | JFM
[7] Barrett, J. H.: Differential equations of non-integer order. Can. J. Math. 6 (1954), 529-541. | DOI | MR | JFM
[8] Bongiorno, B.: Relatively weakly compact sets in the Denjoy space. J. Math. Study 27 (1994), 37-44. | MR | JFM
[9] Bongiorno, B., Panchapagesan, T. V.: On the Alexiewicz topology of the Denjoy space. Real Anal. Exch. 21 (1995/96), 604-614. | DOI | MR | JFM
[10] Bonotto, E. M., Federson, M., Muldowney, P.: A Feynman-Kac solution to a random impulsive equation of Schrödinger type. Real Anal. Exch. 36 (2010/11), 107-148. | DOI | MR | JFM
[11] Carothers, N. L.: Real Analysis. Cambridge University Press, Cambridge (2000). | DOI | MR | JFM
[12] Chew, T. S., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals. Differ. Integral Equ. 4 (1991), 861-868. | DOI | MR | JFM
[13] Das, P. C., Sharma, R. R.: On optimal controls for measure delay-differential equations. SIAM. J. Control 9 (1971), 43-61. | DOI | MR | JFM
[14] Das, P. C., Sharma, R. R.: Existence and stability of measure differential equations. Czech. Math. J. 22 (1972), 145-158. | DOI | MR | JFM
[15] Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics 2004. Springer, Berlin (2010). | DOI | MR | JFM
[16] Diethelm, K., Freed, A. D.: On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. Scientific Computing in Chemical Engineering II Springer, Berlin (1999). | DOI
[17] Duistermaat, J. J., Kolk, J. A. C.: Distributions: Theory and Applications. Cornerstones. Birkhäuser, Boston (2010). | DOI | MR | JFM
[18] Gómez-Aguilar, J. F., Atangana, A.: New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132 (2017), Article ID 13, 21 pages. | DOI
[19] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM
[20] Hayek, N., Trujillo, J., Rivero, M., Bonilla, B., Moreno, J. C.: An extension of Picard-Lindelöff theorem to fractional differential equations. Appl. Anal. 70 (1999), 347-361. | DOI | MR | JFM
[21] (ed.), R. Hilfer: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). | DOI | MR | JFM
[22] Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis. Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1990). | DOI | MR | JFM
[23] Kilbas, A. A., Bonilla, B., Trujillo, J. J.: Existence and uniqueness theorems for nonlinear fractional differential equations. Demonstr. Math. 33 (2000), 583-602. | DOI | MR | JFM
[24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). | DOI | MR | JFM
[25] Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D.: The Kurzweil integral in financial market modeling. Math. Bohem. 141 (2016), 261-286. | DOI | MR | JFM
[26] Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures 378. Springer, Vienna (1997), 291-348. | DOI | MR
[27] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York (1993). | MR | JFM
[28] Monteiro, G. A., Satco, B.: Distributional, differential and integral problems: Equivalence and existence results. Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 7, 26 pages. | DOI | MR | JFM
[29] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Singapore (2019). | DOI | MR | JFM
[30] Morales, M. G., Došlá, Z.: Weighted Cauchy problem: Fractional versus integer order. J. Integral Equations Appl. 33 (2021), 497-509. | DOI | MR | JFM
[31] Morales, M. G., Došlá, Z., Mendoza, F. J.: Riemann-Liouville derivative over the space of integrable distributions. Electron Res. Arch. 28 (2020), 567-587. | DOI | MR | JFM
[32] Morita, T., Sato, K.: Solution of fractional differential equation in terms of distribution theory. Interdiscip. Inf. Sci. 12 (2006), 71-83. | DOI | MR | JFM
[33] Muldowney, P.: Feynman's path integrals and Henstock's non-absolute integration. J. Appl. Anal. 6 (2000), 1-24. | DOI | MR | JFM
[34] Pskhu, A. V.: Initial-value problem for a linear ordinary differential equation of noninteger order. Sb. Math. 202 (2011), 571-582. | DOI | MR | JFM
[35] Sabatier, J., Agrawal, O. P., (eds.), J. A. T. Machado: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007). | DOI | MR | JFM
[36] Salem, A. H. H., Cichoń, M.: On solutions of fractional order boundary value problems with integral boundary conditions in Banach spaces. J. Funct. Spaces Appl. 2013 (2013), Article ID 428094, 13 pages. | DOI | MR | JFM
[37] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993). | MR | JFM
[38] Schmaedeke, W. W.: Optimal control theory for nonlinear vector differential equations containing measures. J. SIAM Control, Ser. A 3 (1965), 231-280. | DOI | MR | JFM
[39] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific, Singapore (1992). | DOI | MR | JFM
[40] Smart, D. R.: Fixed Point Theorems. Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980). | MR | JFM
[41] Talvila, E.: The distributional Denjoy integral. Real Anal. Exch. 33 (2007/08), 51-82. | DOI | MR | JFM
[42] Talvila, E.: Convolutions with the continuous primitive integral. Abstr. Appl. Anal. 2009 (2009), Article ID 307404, 18 pages. | DOI | MR | JFM
[43] Xu, Y. T.: Functional Differential Equations and Measure Differential Equations. Zhongshan University Press, Guangzhou (1988), Chinese.
[44] Ye, G., Liu, W.: The distributional Henstock-Kurzweil integral and applications. Monatsh. Math. 181 (2016), 975-989. | DOI | MR | JFM
[45] Ye, G., Liu, W.: The distributional Henstock-Kurzweil integral and applications: A survey. J. Math. Study 49 (2016), 433-448. | DOI | MR | JFM
[46] Ye, G., Zhang, M., Liu, E., Zhao, D.: Existence and uniqueness of solutions to distributional differential equations involving Henstock-Kurzweil-Stieltjes integrals. Rev. Unión Mat. Argent. 60 (2019), 443-458. | DOI | MR | JFM
[47] Zhou, H., Ye, G., Liu, W., Wang, O.: The distributional Henstock-Kurzweil integral and measure differential equations. Bull. Iran. Math. Soc. 41 (2015), 363-374. | MR | JFM
Cité par Sources :