Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems
Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 533-548 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _{\Omega }\phi u {\rm d}x){\rm div} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb {R}^{n}$ $(n\geq 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb {R}\rightarrow \mathbb {R}$, $\phi \colon \Omega \rightarrow \mathbb {R}$, $g\colon \Omega \times (0,T)\times \mathbb {R}\rightarrow \mathbb {R}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data.
This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _{\Omega }\phi u {\rm d}x){\rm div} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb {R}^{n}$ $(n\geq 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb {R}\rightarrow \mathbb {R}$, $\phi \colon \Omega \rightarrow \mathbb {R}$, $g\colon \Omega \times (0,T)\times \mathbb {R}\rightarrow \mathbb {R}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data.
DOI : 10.21136/MB.2024.0065-23
Classification : 35D30, 35K55, 35Q92
Keywords: nonlocal nonlinear parabolic problem; Schauder fixed point theorem; weak solution; existence; uniqueness
@article{10_21136_MB_2024_0065_23,
     author = {Benhamoud, Tayeb and Zaouche, Elmehdi and Bousselsal, Mahmoud},
     title = {Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems},
     journal = {Mathematica Bohemica},
     pages = {533--548},
     year = {2024},
     volume = {149},
     number = {4},
     doi = {10.21136/MB.2024.0065-23},
     mrnumber = {4840083},
     zbl = {07980804},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0065-23/}
}
TY  - JOUR
AU  - Benhamoud, Tayeb
AU  - Zaouche, Elmehdi
AU  - Bousselsal, Mahmoud
TI  - Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems
JO  - Mathematica Bohemica
PY  - 2024
SP  - 533
EP  - 548
VL  - 149
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0065-23/
DO  - 10.21136/MB.2024.0065-23
LA  - en
ID  - 10_21136_MB_2024_0065_23
ER  - 
%0 Journal Article
%A Benhamoud, Tayeb
%A Zaouche, Elmehdi
%A Bousselsal, Mahmoud
%T Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems
%J Mathematica Bohemica
%D 2024
%P 533-548
%V 149
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0065-23/
%R 10.21136/MB.2024.0065-23
%G en
%F 10_21136_MB_2024_0065_23
Benhamoud, Tayeb; Zaouche, Elmehdi; Bousselsal, Mahmoud. Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 533-548. doi: 10.21136/MB.2024.0065-23

Cité par Sources :