Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems
Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 533-548
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _{\Omega }\phi u {\rm d}x){\rm div} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb {R}^{n}$ $(n\geq 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb {R}\rightarrow \mathbb {R}$, $\phi \colon \Omega \rightarrow \mathbb {R}$, $g\colon \Omega \times (0,T)\times \mathbb {R}\rightarrow \mathbb {R}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data.
This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _{\Omega }\phi u {\rm d}x){\rm div} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb {R}^{n}$ $(n\geq 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb {R}\rightarrow \mathbb {R}$, $\phi \colon \Omega \rightarrow \mathbb {R}$, $g\colon \Omega \times (0,T)\times \mathbb {R}\rightarrow \mathbb {R}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data.
DOI : 10.21136/MB.2024.0065-23
Classification : 35D30, 35K55, 35Q92
Keywords: nonlocal nonlinear parabolic problem; Schauder fixed point theorem; weak solution; existence; uniqueness
@article{10_21136_MB_2024_0065_23,
     author = {Benhamoud, Tayeb and Zaouche, Elmehdi and Bousselsal, Mahmoud},
     title = {Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems},
     journal = {Mathematica Bohemica},
     pages = {533--548},
     year = {2024},
     volume = {149},
     number = {4},
     doi = {10.21136/MB.2024.0065-23},
     mrnumber = {4840083},
     zbl = {07980804},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0065-23/}
}
TY  - JOUR
AU  - Benhamoud, Tayeb
AU  - Zaouche, Elmehdi
AU  - Bousselsal, Mahmoud
TI  - Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems
JO  - Mathematica Bohemica
PY  - 2024
SP  - 533
EP  - 548
VL  - 149
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0065-23/
DO  - 10.21136/MB.2024.0065-23
LA  - en
ID  - 10_21136_MB_2024_0065_23
ER  - 
%0 Journal Article
%A Benhamoud, Tayeb
%A Zaouche, Elmehdi
%A Bousselsal, Mahmoud
%T Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems
%J Mathematica Bohemica
%D 2024
%P 533-548
%V 149
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0065-23/
%R 10.21136/MB.2024.0065-23
%G en
%F 10_21136_MB_2024_0065_23
Benhamoud, Tayeb; Zaouche, Elmehdi; Bousselsal, Mahmoud. Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 533-548. doi: 10.21136/MB.2024.0065-23

[1] Alves, C. O., Boudjeriou, T.: Existence of solution for a class of nonlocal problem via dynamical methods. Rend. Circ. Mat., Palermo (2) 71 (2022), 611-632. | DOI | MR | JFM

[2] Alves, C. O., Covei, D.-P.: Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method. Nonlinear Anal., Real World Appl. 23 (2015), 1-8. | DOI | MR | JFM

[3] Anh, C. T., Tinh, L. T., Toi, V. M.: Global attractors for nonlocal parabolic equations with a new class of nonlinearities. J. Korean Math. Soc. 55 (2018), 531-551. | DOI | MR | JFM

[4] Arcoya, D., Leonori, T., Primo, A.: Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano theorem. Acta Appl. Math. 127 (2013), 87-104. | DOI | MR | JFM

[5] Bousselsal, M., Zaouche, E.: Existence of solution for nonlocal heterogeneous elliptic problems. Mediterr. J. Math. 17 (2020), Article ID 129, 10 pages. | DOI | MR | JFM

[6] Chipot, M.: Elements of Nonlinear Analysis. Birkhäuser Advanced Texts. Birkhäuser, Basel (2000). | DOI | MR | JFM

[7] Chipot, M., Lovat, B.: Some remarks on non local elliptic and parabolic problems. Nonlinear Anal., Theory Methods Appl. 30 (1997), 4619-4627. | DOI | MR | JFM

[8] Chipot, M., Lovat, B.: On the asymptotic behaviour of some nonlocal problems. Positivity 3 (1999), 65-81. | DOI | MR | JFM

[9] Chipot, M., Lovat, B.: Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 8 (2001), 35-51. | MR | JFM

[10] Chipot, M., Molinet, L.: Asymptotic behavior of some nonlocal diffusion problems. Appl. Anal. 80 (2001), 279-315. | DOI | MR | JFM

[11] Corrêa, F. J. S. A.: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal., Theory Methods Appl., Ser. A 59 (2004), 1147-1155. | DOI | MR | JFM

[12] Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5. Evolution Problems I. Springer, Berlin (1992). | MR | JFM

[13] Menezes, S. B. de: Remarks on weak solutions for a nonlocal parabolic problem. Int. J. Math. Math. Sci. 2006 (2006), Article ID 82654, 10 pages. | DOI | MR | JFM

[14] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99. Springer, New York (1993). | DOI | MR | JFM

[15] Jiang, R., Zhai, C.: Properties of unique positive solutions for a class of nonlocal semilinear elliptic equations. Topol. Methods Nonlinear Anal. 50 (2017), 669-682. | DOI | MR | JFM

[16] Jin, F., Yan, B.: Existence and global behavior of the solution to a parabolic equation with nonlocal diffusion. AIMS Math. 6 (2021), 5292-5315. | DOI | MR | JFM

[17] Lovat, B.: Études de quelques problèmes paraboliques non locaux: Thèse. Université de Metz, Metz (1995), French Available at https://hal.univ-lorraine.fr/tel-01777092\kern0pt

[18] Yan, B., Wang, D.: The multiplicity of positive solutions for a class of nonlocal elliptic problem. J. Math. Anal. Appl. 442 (2016), 72-102. | DOI | MR | JFM

[19] Zaouche, E.: Nontrivial weak solutions for nonlocal nonhomogeneous elliptic problems. Appl. Anal. 101 (2022), 1261-1270. | DOI | MR | JFM

[20] Zaouche, E.: Existence theorems of nontrivial and positive solutions for nonlocal inhomogeneous elliptic problems. Ric. Mat. 72 (2023), 949-960. | DOI | MR | JFM

Cité par Sources :