Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems
Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 533-548
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _{\Omega }\phi u {\rm d}x){\rm div} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb {R}^{n}$ $(n\geq 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb {R}\rightarrow \mathbb {R}$, $\phi \colon \Omega \rightarrow \mathbb {R}$, $g\colon \Omega \times (0,T)\times \mathbb {R}\rightarrow \mathbb {R}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data.
This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _{\Omega }\phi u {\rm d}x){\rm div} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb {R}^{n}$ $(n\geq 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb {R}\rightarrow \mathbb {R}$, $\phi \colon \Omega \rightarrow \mathbb {R}$, $g\colon \Omega \times (0,T)\times \mathbb {R}\rightarrow \mathbb {R}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data.
DOI :
10.21136/MB.2024.0065-23
Classification :
35D30, 35K55, 35Q92
Keywords: nonlocal nonlinear parabolic problem; Schauder fixed point theorem; weak solution; existence; uniqueness
Keywords: nonlocal nonlinear parabolic problem; Schauder fixed point theorem; weak solution; existence; uniqueness
@article{10_21136_MB_2024_0065_23,
author = {Benhamoud, Tayeb and Zaouche, Elmehdi and Bousselsal, Mahmoud},
title = {Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems},
journal = {Mathematica Bohemica},
pages = {533--548},
year = {2024},
volume = {149},
number = {4},
doi = {10.21136/MB.2024.0065-23},
mrnumber = {4840083},
zbl = {07980804},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0065-23/}
}
TY - JOUR AU - Benhamoud, Tayeb AU - Zaouche, Elmehdi AU - Bousselsal, Mahmoud TI - Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems JO - Mathematica Bohemica PY - 2024 SP - 533 EP - 548 VL - 149 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0065-23/ DO - 10.21136/MB.2024.0065-23 LA - en ID - 10_21136_MB_2024_0065_23 ER -
%0 Journal Article %A Benhamoud, Tayeb %A Zaouche, Elmehdi %A Bousselsal, Mahmoud %T Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems %J Mathematica Bohemica %D 2024 %P 533-548 %V 149 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0065-23/ %R 10.21136/MB.2024.0065-23 %G en %F 10_21136_MB_2024_0065_23
Benhamoud, Tayeb; Zaouche, Elmehdi; Bousselsal, Mahmoud. Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 533-548. doi: 10.21136/MB.2024.0065-23
Cité par Sources :