Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices
Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 503-532
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no $M_3$ as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset $P$ is said to be JConSPS-representable if there is an SPS lattice $L$ such that $P$ is isomorphic to the poset ${\rm J}({\rm Con} L)$ of join-irreducible congruences of $L$. We prove that if $1
Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no $M_3$ as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset $P$ is said to be JConSPS-representable if there is an SPS lattice $L$ such that $P$ is isomorphic to the poset ${\rm J}({\rm Con} L)$ of join-irreducible congruences of $L$. We prove that if $1$ and $P$ is an $n$-element JConSPS-representable poset, then there exists a slim rectangular lattice $L$ such that ${\rm J}({\rm Con} L)\cong P$, the length of $L$ is at most $2n^2$, and $|L|\leq 4n^4$. This offers an algorithm to decide whether a finite poset $P$ is JConSPS-representable (or a finite distributive lattice is ``ConSPS-representable''). This algorithm is slow as G. Czédli, T. Dékány, G. Gyenizse, and J. Kulin proved in 2016 that there are asymptotically $\frac 12(k-2)! {\rm e}^2$ slim rectangular lattices of a given length $k$, where ${\rm e}$ is the famous constant $\approx 2.71828$. The known properties and constructions of JConSPS-representable posets can accelerate the algorithm; we present a new construction.
DOI : 10.21136/MB.2024.0006-23
Classification : 06C10
Keywords: slim rectangular lattice; slim semimodular lattice; planar semimodular lattice; congruence lattice; lattice congruence; lamp; $\mathcal C_1$-diagram
@article{10_21136_MB_2024_0006_23,
     author = {Cz\'edli, G\'abor},
     title = {Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices},
     journal = {Mathematica Bohemica},
     pages = {503--532},
     year = {2024},
     volume = {149},
     number = {4},
     doi = {10.21136/MB.2024.0006-23},
     mrnumber = {4840082},
     zbl = {07980803},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0006-23/}
}
TY  - JOUR
AU  - Czédli, Gábor
TI  - Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices
JO  - Mathematica Bohemica
PY  - 2024
SP  - 503
EP  - 532
VL  - 149
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0006-23/
DO  - 10.21136/MB.2024.0006-23
LA  - en
ID  - 10_21136_MB_2024_0006_23
ER  - 
%0 Journal Article
%A Czédli, Gábor
%T Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices
%J Mathematica Bohemica
%D 2024
%P 503-532
%V 149
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2024.0006-23/
%R 10.21136/MB.2024.0006-23
%G en
%F 10_21136_MB_2024_0006_23
Czédli, Gábor. Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 503-532. doi: 10.21136/MB.2024.0006-23

[1] Adaricheva, K., Czédli, G.: Note on the description of join-distributive lattices by permutations. Algebra Univers. 72 (2014), 155-162. | DOI | MR | JFM

[2] Ahmed, D., Horváth, E. K.: Yet two additional large numbers of subuniverses of finite lattices. Discuss. Math., Gen. Algebra Appl. 39 (2019), 251-261. | DOI | MR | JFM

[3] Czédli, G.: Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices. Algebra Univers. 67 (2012), 313-345. | DOI | MR | JFM

[4] Czédli, G.: Coordinatization of finite join-distributive lattices. Algebra Univers. 71 (2014), 385-404. | DOI | MR | JFM

[5] Czédli, G.: Patch extensions and trajectory colorings of slim rectangular lattices. Algebra Univers. 72 (2014), 125-154. | DOI | MR | JFM

[6] Czédli, G.: Diagrams and rectangular extensions of planar semimodular lattices. Algebra Univers. 77 (2017), 443-498. | DOI | MR | JFM

[7] Czédli, G.: Lamps in slim rectangular planar semimodular lattices. Acta Sci. Math. 87 (2021), 381-413. | DOI | MR | JFM

[8] Czédli, G.: A property of meets in slim semimodular lattices and its application to retracts. Acta Sci. Math. 88 (2022), 595-610. | DOI | MR | JFM

[9] Czédli, G.: Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures. Arch. Math., Brno 58 (2022), 15-33. | DOI | MR | JFM

[10] Czédli, G.: $C_1$-diagrams of slim rectangular semimodular lattices permit quotient diagrams. (to appear) in Acta Sci. Math. | DOI | MR

[11] Czédli, G.: Infinitely many new properties of the congruence lattices of slim semimodular lattices. Acta. Sci. Math. 89 (2023), 319-337. | DOI | MR

[12] Czédli, G., Dékány, T., Gyenizse, G., Kulin, J.: The number of slim rectangular lattices. Algebra Univers. 75 (2016), 33-50. | DOI | MR | JFM

[13] Czédli, G., Grätzer, G.: A new property of congruence lattices of slim, planar, semimodular lattices. Categ. Gen. Algebr. Struct. Appl. 16 (2022), 1-28. | MR | JFM

[14] Czédli, G., Kurusa, Á.: A convex combinatorial property of compact sets in the plane and its roots in lattice theory. Categ. Gen. Algebr. Struct. Appl. 11 (2019), 57-92. | DOI | MR | JFM

[15] Czédli, G., Schmidt, E. T.: Frankl's conjecture for large semimodular and planar semimodular lattices. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 47 (2008), 47-53. | MR | JFM

[16] Czédli, G., Schmidt, E. T.: The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices. Algebra Univers. 66 (2011), 69-79. | DOI | MR | JFM

[17] Czédli, G., Schmidt, E. T.: Slim semimodular lattices. I. A visual approach. Order 29 (2012), 481-497. | DOI | MR | JFM

[18] Grätzer, G.: Congruences of fork extensions of slim, planar, semimodular lattices. Algebra Univers. 76 (2016), 139-154. | DOI | MR | JFM

[19] Grätzer, G.: Notes on planar semimodular lattices. VIII. Congruence lattices of SPS lattices. Algebra Univers. 81 (2020), Article ID 15, 3 pages. | DOI | MR | JFM

[20] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. I. Construction. Acta Sci. Math. 73 (2007), 445-462. | MR | JFM

[21] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. III. Rectangular lattices. Acta Sci. Math. 75 (2009), 29-48. | MR | JFM

[22] Grätzer, G., Lakser, H., Schmidt, E. T.: Congruence lattices of finite semimodular lattices. Can. Math. Bull. 41 (1998), 290-297. | DOI | MR | JFM

[23] Kelly, D., Rival, I.: Planar lattices. Can. J. Math. 27 (1975), 636-665. | DOI | MR | JFM

Cité par Sources :