Keywords: Kurzweil-Stieltjes integral; integral over arbitrary bounded sets; equiintegrability; equiregulatedness; convergence theorem; Harnack extension principle
@article{10_21136_MB_2023_0162_22,
author = {Hanung, Umi Mahnuna},
title = {Role of the {Harnack} extension principle in the {Kurzweil-Stieltjes} integral},
journal = {Mathematica Bohemica},
pages = {337--363},
year = {2024},
volume = {149},
number = {3},
doi = {10.21136/MB.2023.0162-22},
mrnumber = {4801106},
zbl = {07953707},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0162-22/}
}
TY - JOUR AU - Hanung, Umi Mahnuna TI - Role of the Harnack extension principle in the Kurzweil-Stieltjes integral JO - Mathematica Bohemica PY - 2024 SP - 337 EP - 363 VL - 149 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0162-22/ DO - 10.21136/MB.2023.0162-22 LA - en ID - 10_21136_MB_2023_0162_22 ER -
%0 Journal Article %A Hanung, Umi Mahnuna %T Role of the Harnack extension principle in the Kurzweil-Stieltjes integral %J Mathematica Bohemica %D 2024 %P 337-363 %V 149 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0162-22/ %R 10.21136/MB.2023.0162-22 %G en %F 10_21136_MB_2023_0162_22
Hanung, Umi Mahnuna. Role of the Harnack extension principle in the Kurzweil-Stieltjes integral. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 337-363. doi: 10.21136/MB.2023.0162-22
[1] Arredondo, J. H., Bernal, M., Morales, M. G.: Fourier analysis with generalized integration. Mathematics 8 (2020), Article ID 1199, 16 pages. | DOI
[2] Bartle, R. G.: A convergence theorem for generalized Riemann integrals. Real Anal. Exch. 20 (1994/1995), 119-124. | DOI | MR | JFM
[3] Bartle, R. G.: A Modern Theory of Integration. Graduate Studies in Mathematics 32. AMS, Providence (2001). | DOI | MR | JFM
[4] Bongiorno, B., Piazza, L. Di: Convergence theorems for generalized Riemann-Stieltjes integrals. Real Anal. Exch. 17 (1991/1992), 339-361. | DOI | MR | JFM
[5] Bonotto, E. M., Federson, M., (eds.), J. G. Mesquita: Generalized Ordinary Differential Equations in Abstract Spaces and Applications. John Wiley & Sons, Hoboken (2021). | DOI | MR | JFM
[6] Cao, S. S.: The Henstock integral for Banach-valued functions. Southeast Asian Bull. Math. 16 (1992), 35-40. | MR | JFM
[7] Caponetti, D., Cichoń, M., Marraffa, V.: On a step method and a propagation of discontinuity. Comput. Appl. Math. 38 (2019), Article ID 172, 20 pages. | DOI | MR | JFM
[8] Carl, S., Heikkilä, S.: Fixed Point Theory in Ordered Sets and Applications: From Differential and Integral Equations to Game Theory. Springer, New York (2011). | DOI | MR | JFM
[9] Cousin, P.: Sur les fonctions de $n$ variables complexes. Acta Math. 19 (1895), 1-62 French \99999JFM99999 26.0456.02. | DOI | MR
[10] Federson, M., Mawhin, J., Mesquita, C.: Existence of periodic solutions and bifurcation points for generalized ordinary differential equations. Bull. Sci. Math. 169 (2021), Article ID 102991, 31 pages. | DOI | MR | JFM
[11] Fraňková, D.: Regulated functions. Math. Bohem. 116 (1991), 20-59. | DOI | MR | JFM
[12] Gordon, R. A.: Another look at a convergence theorem for the Henstock integral. Real Anal. Exch. 15 (1989/1990), 724-728. | DOI | MR | JFM
[13] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM
[14] Hanung, U. M., Tvrdý, M.: On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil. Math. Bohem. 144 (2019), 357-372. | DOI | MR | JFM
[15] Henstock, R.: Lectures on the Theory of Integration. Series in Real Analysis 1. World Scientific, Singapore (1988). | DOI | MR | JFM
[16] Hildebrandt, T. H.: Introduction to the Theory of Integration. Pure and Applied Mathematics 13. Academic Press, New York (1963). | MR | JFM
[17] Hönig, C. S.: Volterra Stieltjes-Integral Equations: Functional Analytic Methods, Linear Constraints. North-Holland Mathematics Studies 16. Notas de Mathematica 56. North-Holland, Amsterdam (1975). | MR | JFM
[18] Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D.: The Kurzweil integral in financial market modeling. Math. Bohem. 141 (2016), 261-286. | DOI | MR | JFM
[19] Kubota, Y.: The Cauchy property of the generalized approximately continuous Perron integral. Tohoku Math. J., II. Ser. 12 (1960), 171-174. | DOI | MR | JFM
[20] Kurtz, D. S., Swartz, C. W.: Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane. Series in Real Analysis 13. World Scientific, Hackensack (2012). | DOI | MR | JFM
[21] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. | DOI | MR | JFM
[22] Kurzweil, J.: Nichtabsolut konvergente Integrale. Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. | MR | JFM
[23] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7. World Scientific, Singapore (2000). | DOI | MR | JFM
[24] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Hackensack (2012). | DOI | MR | JFM
[25] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exch. 17 (1991/1992), 110-139. | DOI | MR | JFM
[26] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). | DOI | MR | JFM
[27] Lee, P. Y.: Harnack Extension for the Henstock integral in the Euclidean space. J. Math. Study 27 (1994), 5-8. | MR | JFM
[28] Lee, T. Y.: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analysis 12. World Scientific, Hackensack (2011). | DOI | MR | JFM
[29] Liu, W., Krejčí, P., Ye, G.: Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 3783-3795. | DOI | MR | JFM
[30] Albés, I. Márquez, Slavík, A., Tvrdý, M.: Duality for Stieltjes differential and integral equations. J. Math. Anal. Appl. 519 (2023), Article ID 126789, 52 pages. | DOI | MR | JFM
[31] Monteiro, G. A.: On Kurzweil-Stieltjes equiintegrability and generalized BV functions. Math. Bohem. 144 (2019), 423-436. | DOI | MR | JFM
[32] Monteiro, G. A., Hanung, U. M., Tvrdý, M.: Bounded convergence theorem for abstract Kurzweil-Stieltjes integral. Monatsh. Math. 180 (2016), 409-434. | DOI | MR | JFM
[33] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). | DOI | MR | JFM
[34] Monteiro, G. A., Tvrdý, M.: On Kurzweil-Stieltjes integral in a Banach space. Math. Bohem. 137 (2012), 365-381. | DOI | MR | JFM
[35] Monteiro, G. A., Tvrdý, M.: Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete Contin. Dyn. Syst. 33 (2013), 283-303. | DOI | MR | JFM
[36] Ng, W. L.: Nonabsolute Integration on Measure Spaces. Series in Real Analysis 14. World Scientific, Hackensack (2018). | DOI | MR | JFM
[37] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics 109. Cambridge University Press, Cambridge (1993). | MR | JFM
[38] Saks, S.: Theory of the Integral. Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). | MR | JFM
[39] Sánchez-Perales, S., Mendoza-Torres, F. J.: Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral. Czech. Math. J. 70 (2020), 519-537. | DOI | MR | JFM
[40] Sánchez-Perales, S., Pérez-Becerra, T., Vázquez-Hipólito, V., Oliveros-Oliveros, J. J. O.: Sturm-Liouville differential equations involving Kurzweil-Henstock integrable functions. Mathematics 9 (2021), Article ID 1403, 20 pages. | DOI
[41] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific, Singapore (1992). | DOI | MR | JFM
[42] Schwabik, Š.: Abstract Perron-Stieltjes integral. Math. Bohem. 121 (1996), 425-447. | DOI | MR | JFM
[43] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457. | DOI | MR | JFM
[44] Schwabik, Š.: A note on integration by parts for abstract Perron-Stieltjes integrals. Math. Bohem. 126 (2001), 613-629. | DOI | MR | JFM
[45] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations: Boundary Value Problems and Adjoints. Academia and D. Reidel, Praha and Dordrecht (1979). | MR | JFM
[46] Schwabik, Š., Vrkoč, I.: On Kurzweil-Henstock equiintegrable sequences. Math. Bohem. 121 (1996), 189-207. | DOI | MR | JFM
[47] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). | DOI | MR | JFM
[48] Slavík, A.: Explicit solutions of linear Stieltjes integral equations. Result. Math. 78 (2023), Article ID 40, 28 pages. | DOI | MR | JFM
[49] Stieltjes, T. J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 4 (1995), J76--J122 French. | DOI | MR | JFM
[50] Trench, W. F.: Introduction to Real Analysis. Prentice Hall, Upper Saddle River (2003). | JFM
[51] Tvrdý, M.: Regulated functions and the Perron-Stieltjes integral. Čas. Pěstování Mat. 114 (1989), 187-209. | DOI | MR | JFM
Cité par Sources :