Role of the Harnack extension principle in the Kurzweil-Stieltjes integral
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 337-363
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the theories of integration and of ordinary differential and integral equations, convergence theorems provide one of the most widely used tools. Since the values of the Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock integral, which is a key step to supply convergence theorems, cannot be easily extended to the Kurzweil-type Stieltjes integrals with discontinuous integrators. Moreover, in general, the existence of integral over an elementary set $E$ does not always imply the existence of integral over every subset $T$ of $E.$ The goal of this paper is to construct the Harnack extension principle for the Kurzweil-Stieltjes integral with values in Banach spaces and then to demonstrate its role in guaranteeing the integrability over arbitrary subsets of elementary sets. New concepts of equiintegrability and equiregulatedness involving elementary sets are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration.
In the theories of integration and of ordinary differential and integral equations, convergence theorems provide one of the most widely used tools. Since the values of the Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock integral, which is a key step to supply convergence theorems, cannot be easily extended to the Kurzweil-type Stieltjes integrals with discontinuous integrators. Moreover, in general, the existence of integral over an elementary set $E$ does not always imply the existence of integral over every subset $T$ of $E.$ The goal of this paper is to construct the Harnack extension principle for the Kurzweil-Stieltjes integral with values in Banach spaces and then to demonstrate its role in guaranteeing the integrability over arbitrary subsets of elementary sets. New concepts of equiintegrability and equiregulatedness involving elementary sets are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration.
DOI : 10.21136/MB.2023.0162-22
Classification : 26A36, 26A39, 26A42, 28B05, 28C20
Keywords: Kurzweil-Stieltjes integral; integral over arbitrary bounded sets; equiintegrability; equiregulatedness; convergence theorem; Harnack extension principle
@article{10_21136_MB_2023_0162_22,
     author = {Hanung, Umi Mahnuna},
     title = {Role of the {Harnack} extension principle in the {Kurzweil-Stieltjes} integral},
     journal = {Mathematica Bohemica},
     pages = {337--363},
     year = {2024},
     volume = {149},
     number = {3},
     doi = {10.21136/MB.2023.0162-22},
     mrnumber = {4801106},
     zbl = {07953707},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0162-22/}
}
TY  - JOUR
AU  - Hanung, Umi Mahnuna
TI  - Role of the Harnack extension principle in the Kurzweil-Stieltjes integral
JO  - Mathematica Bohemica
PY  - 2024
SP  - 337
EP  - 363
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0162-22/
DO  - 10.21136/MB.2023.0162-22
LA  - en
ID  - 10_21136_MB_2023_0162_22
ER  - 
%0 Journal Article
%A Hanung, Umi Mahnuna
%T Role of the Harnack extension principle in the Kurzweil-Stieltjes integral
%J Mathematica Bohemica
%D 2024
%P 337-363
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0162-22/
%R 10.21136/MB.2023.0162-22
%G en
%F 10_21136_MB_2023_0162_22
Hanung, Umi Mahnuna. Role of the Harnack extension principle in the Kurzweil-Stieltjes integral. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 337-363. doi: 10.21136/MB.2023.0162-22

[1] Arredondo, J. H., Bernal, M., Morales, M. G.: Fourier analysis with generalized integration. Mathematics 8 (2020), Article ID 1199, 16 pages. | DOI

[2] Bartle, R. G.: A convergence theorem for generalized Riemann integrals. Real Anal. Exch. 20 (1994/1995), 119-124. | DOI | MR | JFM

[3] Bartle, R. G.: A Modern Theory of Integration. Graduate Studies in Mathematics 32. AMS, Providence (2001). | DOI | MR | JFM

[4] Bongiorno, B., Piazza, L. Di: Convergence theorems for generalized Riemann-Stieltjes integrals. Real Anal. Exch. 17 (1991/1992), 339-361. | DOI | MR | JFM

[5] Bonotto, E. M., Federson, M., (eds.), J. G. Mesquita: Generalized Ordinary Differential Equations in Abstract Spaces and Applications. John Wiley & Sons, Hoboken (2021). | DOI | MR | JFM

[6] Cao, S. S.: The Henstock integral for Banach-valued functions. Southeast Asian Bull. Math. 16 (1992), 35-40. | MR | JFM

[7] Caponetti, D., Cichoń, M., Marraffa, V.: On a step method and a propagation of discontinuity. Comput. Appl. Math. 38 (2019), Article ID 172, 20 pages. | DOI | MR | JFM

[8] Carl, S., Heikkilä, S.: Fixed Point Theory in Ordered Sets and Applications: From Differential and Integral Equations to Game Theory. Springer, New York (2011). | DOI | MR | JFM

[9] Cousin, P.: Sur les fonctions de $n$ variables complexes. Acta Math. 19 (1895), 1-62 French \99999JFM99999 26.0456.02. | DOI | MR

[10] Federson, M., Mawhin, J., Mesquita, C.: Existence of periodic solutions and bifurcation points for generalized ordinary differential equations. Bull. Sci. Math. 169 (2021), Article ID 102991, 31 pages. | DOI | MR | JFM

[11] Fraňková, D.: Regulated functions. Math. Bohem. 116 (1991), 20-59. | DOI | MR | JFM

[12] Gordon, R. A.: Another look at a convergence theorem for the Henstock integral. Real Anal. Exch. 15 (1989/1990), 724-728. | DOI | MR | JFM

[13] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). | DOI | MR | JFM

[14] Hanung, U. M., Tvrdý, M.: On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil. Math. Bohem. 144 (2019), 357-372. | DOI | MR | JFM

[15] Henstock, R.: Lectures on the Theory of Integration. Series in Real Analysis 1. World Scientific, Singapore (1988). | DOI | MR | JFM

[16] Hildebrandt, T. H.: Introduction to the Theory of Integration. Pure and Applied Mathematics 13. Academic Press, New York (1963). | MR | JFM

[17] Hönig, C. S.: Volterra Stieltjes-Integral Equations: Functional Analytic Methods, Linear Constraints. North-Holland Mathematics Studies 16. Notas de Mathematica 56. North-Holland, Amsterdam (1975). | MR | JFM

[18] Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D.: The Kurzweil integral in financial market modeling. Math. Bohem. 141 (2016), 261-286. | DOI | MR | JFM

[19] Kubota, Y.: The Cauchy property of the generalized approximately continuous Perron integral. Tohoku Math. J., II. Ser. 12 (1960), 171-174. | DOI | MR | JFM

[20] Kurtz, D. S., Swartz, C. W.: Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane. Series in Real Analysis 13. World Scientific, Hackensack (2012). | DOI | MR | JFM

[21] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. | DOI | MR | JFM

[22] Kurzweil, J.: Nichtabsolut konvergente Integrale. Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. | MR | JFM

[23] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7. World Scientific, Singapore (2000). | DOI | MR | JFM

[24] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Hackensack (2012). | DOI | MR | JFM

[25] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions. Real Anal. Exch. 17 (1991/1992), 110-139. | DOI | MR | JFM

[26] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). | DOI | MR | JFM

[27] Lee, P. Y.: Harnack Extension for the Henstock integral in the Euclidean space. J. Math. Study 27 (1994), 5-8. | MR | JFM

[28] Lee, T. Y.: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analysis 12. World Scientific, Hackensack (2011). | DOI | MR | JFM

[29] Liu, W., Krejčí, P., Ye, G.: Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 3783-3795. | DOI | MR | JFM

[30] Albés, I. Márquez, Slavík, A., Tvrdý, M.: Duality for Stieltjes differential and integral equations. J. Math. Anal. Appl. 519 (2023), Article ID 126789, 52 pages. | DOI | MR | JFM

[31] Monteiro, G. A.: On Kurzweil-Stieltjes equiintegrability and generalized BV functions. Math. Bohem. 144 (2019), 423-436. | DOI | MR | JFM

[32] Monteiro, G. A., Hanung, U. M., Tvrdý, M.: Bounded convergence theorem for abstract Kurzweil-Stieltjes integral. Monatsh. Math. 180 (2016), 409-434. | DOI | MR | JFM

[33] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). | DOI | MR | JFM

[34] Monteiro, G. A., Tvrdý, M.: On Kurzweil-Stieltjes integral in a Banach space. Math. Bohem. 137 (2012), 365-381. | DOI | MR | JFM

[35] Monteiro, G. A., Tvrdý, M.: Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete Contin. Dyn. Syst. 33 (2013), 283-303. | DOI | MR | JFM

[36] Ng, W. L.: Nonabsolute Integration on Measure Spaces. Series in Real Analysis 14. World Scientific, Hackensack (2018). | DOI | MR | JFM

[37] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics 109. Cambridge University Press, Cambridge (1993). | MR | JFM

[38] Saks, S.: Theory of the Integral. Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). | MR | JFM

[39] Sánchez-Perales, S., Mendoza-Torres, F. J.: Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral. Czech. Math. J. 70 (2020), 519-537. | DOI | MR | JFM

[40] Sánchez-Perales, S., Pérez-Becerra, T., Vázquez-Hipólito, V., Oliveros-Oliveros, J. J. O.: Sturm-Liouville differential equations involving Kurzweil-Henstock integrable functions. Mathematics 9 (2021), Article ID 1403, 20 pages. | DOI

[41] Schwabik, Š.: Generalized Ordinary Differential Equations. Series in Real Analysis 5. World Scientific, Singapore (1992). | DOI | MR | JFM

[42] Schwabik, Š.: Abstract Perron-Stieltjes integral. Math. Bohem. 121 (1996), 425-447. | DOI | MR | JFM

[43] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457. | DOI | MR | JFM

[44] Schwabik, Š.: A note on integration by parts for abstract Perron-Stieltjes integrals. Math. Bohem. 126 (2001), 613-629. | DOI | MR | JFM

[45] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations: Boundary Value Problems and Adjoints. Academia and D. Reidel, Praha and Dordrecht (1979). | MR | JFM

[46] Schwabik, Š., Vrkoč, I.: On Kurzweil-Henstock equiintegrable sequences. Math. Bohem. 121 (1996), 189-207. | DOI | MR | JFM

[47] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). | DOI | MR | JFM

[48] Slavík, A.: Explicit solutions of linear Stieltjes integral equations. Result. Math. 78 (2023), Article ID 40, 28 pages. | DOI | MR | JFM

[49] Stieltjes, T. J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 4 (1995), J76--J122 French. | DOI | MR | JFM

[50] Trench, W. F.: Introduction to Real Analysis. Prentice Hall, Upper Saddle River (2003). | JFM

[51] Tvrdý, M.: Regulated functions and the Perron-Stieltjes integral. Čas. Pěstování Mat. 114 (1989), 187-209. | DOI | MR | JFM

Cité par Sources :