A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 317-336
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The half-linear differential equation $$ (|u'|^{\alpha }{\rm sgn} u')' = \alpha (\lambda ^{\alpha + 1} + b(t))|u|^{\alpha }{\rm sgn} u, \quad t \geq t_{0}, $$ is considered, where $\alpha $ and $\lambda $ are positive constants and $b(t)$ is a real-valued continuous function on $[t_{0},\infty )$. It is proved that, under a mild integral smallness condition of $b(t)$ which is weaker than the absolutely integrable condition of $b(t)$, the above equation has a nonoscillatory solution $u_{0}(t)$ such that $u_{0}(t) \sim {\rm e}^{- \lambda t}$ and $u_{0}'(t) \sim - \lambda {\rm e}^{- \lambda t}$ ($t \to \infty $), and a nonoscillatory solution $u_{1}(t)$ such that $u_{1}(t) \sim {\rm e}^{\lambda t}$ and $u_{1}'(t) \sim \lambda {\rm e}^{\lambda t}$ ($t \to \infty $).
The half-linear differential equation $$ (|u'|^{\alpha }{\rm sgn} u')' = \alpha (\lambda ^{\alpha + 1} + b(t))|u|^{\alpha }{\rm sgn} u, \quad t \geq t_{0}, $$ is considered, where $\alpha $ and $\lambda $ are positive constants and $b(t)$ is a real-valued continuous function on $[t_{0},\infty )$. It is proved that, under a mild integral smallness condition of $b(t)$ which is weaker than the absolutely integrable condition of $b(t)$, the above equation has a nonoscillatory solution $u_{0}(t)$ such that $u_{0}(t) \sim {\rm e}^{- \lambda t}$ and $u_{0}'(t) \sim - \lambda {\rm e}^{- \lambda t}$ ($t \to \infty $), and a nonoscillatory solution $u_{1}(t)$ such that $u_{1}(t) \sim {\rm e}^{\lambda t}$ and $u_{1}'(t) \sim \lambda {\rm e}^{\lambda t}$ ($t \to \infty $).
DOI : 10.21136/MB.2023.0158-22
Classification : 34C11, 34D05, 34D10
Keywords: half-linear differential equation; nonoscillatory solution; asymptotic form
@article{10_21136_MB_2023_0158_22,
     author = {Naito, Manabu},
     title = {A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations},
     journal = {Mathematica Bohemica},
     pages = {317--336},
     year = {2024},
     volume = {149},
     number = {3},
     doi = {10.21136/MB.2023.0158-22},
     mrnumber = {4801105},
     zbl = {07953706},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0158-22/}
}
TY  - JOUR
AU  - Naito, Manabu
TI  - A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations
JO  - Mathematica Bohemica
PY  - 2024
SP  - 317
EP  - 336
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0158-22/
DO  - 10.21136/MB.2023.0158-22
LA  - en
ID  - 10_21136_MB_2023_0158_22
ER  - 
%0 Journal Article
%A Naito, Manabu
%T A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations
%J Mathematica Bohemica
%D 2024
%P 317-336
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0158-22/
%R 10.21136/MB.2023.0158-22
%G en
%F 10_21136_MB_2023_0158_22
Naito, Manabu. A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 317-336. doi: 10.21136/MB.2023.0158-22

[1] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations. Heath Mathematical Monographs. Heath, Boston (1965). | MR | JFM

[2] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland Mathematics Studies 202. Elsevier, Amsterdam (2005). | DOI | MR | JFM

[3] Hartman, P.: Ordinary Differential Equations. John Wiley, New York (1964). | DOI | MR | JFM

[4] Jaroš, J., Takaŝi, K., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Anal., Theory Methods Appl., Ser. A 64 (2006), 762-787. | DOI | MR | JFM

[5] Kusano, T., Manojlović, J.: Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Article ID 62, 24 pages. | DOI | MR | JFM

[6] Luey, S., Usami, H.: Application of generalized Riccati equations to analysis of asymptotic forms of solutions of perturbed half-linear ordinary differential equations. Int. J. Dyn. Syst. Differ. Equ. 11 (2021), 378-390. | DOI | MR | JFM

[7] Luey, S., Usami, H.: Asymptotic forms of solutions of perturbed half-linear ordinary differential equations. Arch. Math., Brno 57 (2021), 27-39. | DOI | MR | JFM

[8] Naito, M.: Asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations. Arch. Math. 116 (2021), 559-570. | DOI | MR | JFM

[9] Naito, M.: Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations. I. Opusc. Math. 41 (2021), 71-94. | DOI | MR | JFM

[10] Naito, M.: Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations. II. Arch. Math., Brno 57 (2021), 41-60. | DOI | MR | JFM

[11] Naito, M., Usami, H.: On the existence and asymptotic behavior of solutions of half-linear ordinary differential equations. J. Differ. Equations 318 (2022), 359-383. | DOI | MR | JFM

[12] Řehák, P.: Asymptotic formulae for solutions of half-linear differential equations. Appl. Math. Comput. 292 (2017), 165-177. | DOI | MR | JFM

[13] Řehák, P.: Nonlinear Poincaré-Perron theorem. Appl. Math. Lett. 121 (2021), Article ID 107425, 7 pages. | DOI | MR | JFM

[14] Řehák, P., Taddei, V.: Solutions of half-linear differential equations in the classes Gamma and Pi. Differ. Integral Equ. 29 (2016), 683-714. | DOI | MR | JFM

[15] Takaŝi, K., Manojlović, J. V.: Asymptotic behavior of solutions of half-linear differential equations and generalized Karamata functions. Georgian Math. J. 28 (2021), 611-636. | DOI | MR | JFM

Cité par Sources :