Keywords: half-linear differential equation; nonoscillatory solution; asymptotic form
@article{10_21136_MB_2023_0158_22,
author = {Naito, Manabu},
title = {A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations},
journal = {Mathematica Bohemica},
pages = {317--336},
year = {2024},
volume = {149},
number = {3},
doi = {10.21136/MB.2023.0158-22},
mrnumber = {4801105},
zbl = {07953706},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0158-22/}
}
TY - JOUR AU - Naito, Manabu TI - A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations JO - Mathematica Bohemica PY - 2024 SP - 317 EP - 336 VL - 149 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0158-22/ DO - 10.21136/MB.2023.0158-22 LA - en ID - 10_21136_MB_2023_0158_22 ER -
%0 Journal Article %A Naito, Manabu %T A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations %J Mathematica Bohemica %D 2024 %P 317-336 %V 149 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0158-22/ %R 10.21136/MB.2023.0158-22 %G en %F 10_21136_MB_2023_0158_22
Naito, Manabu. A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 317-336. doi: 10.21136/MB.2023.0158-22
[1] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations. Heath Mathematical Monographs. Heath, Boston (1965). | MR | JFM
[2] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland Mathematics Studies 202. Elsevier, Amsterdam (2005). | DOI | MR | JFM
[3] Hartman, P.: Ordinary Differential Equations. John Wiley, New York (1964). | DOI | MR | JFM
[4] Jaroš, J., Takaŝi, K., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Anal., Theory Methods Appl., Ser. A 64 (2006), 762-787. | DOI | MR | JFM
[5] Kusano, T., Manojlović, J.: Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Article ID 62, 24 pages. | DOI | MR | JFM
[6] Luey, S., Usami, H.: Application of generalized Riccati equations to analysis of asymptotic forms of solutions of perturbed half-linear ordinary differential equations. Int. J. Dyn. Syst. Differ. Equ. 11 (2021), 378-390. | DOI | MR | JFM
[7] Luey, S., Usami, H.: Asymptotic forms of solutions of perturbed half-linear ordinary differential equations. Arch. Math., Brno 57 (2021), 27-39. | DOI | MR | JFM
[8] Naito, M.: Asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations. Arch. Math. 116 (2021), 559-570. | DOI | MR | JFM
[9] Naito, M.: Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations. I. Opusc. Math. 41 (2021), 71-94. | DOI | MR | JFM
[10] Naito, M.: Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations. II. Arch. Math., Brno 57 (2021), 41-60. | DOI | MR | JFM
[11] Naito, M., Usami, H.: On the existence and asymptotic behavior of solutions of half-linear ordinary differential equations. J. Differ. Equations 318 (2022), 359-383. | DOI | MR | JFM
[12] Řehák, P.: Asymptotic formulae for solutions of half-linear differential equations. Appl. Math. Comput. 292 (2017), 165-177. | DOI | MR | JFM
[13] Řehák, P.: Nonlinear Poincaré-Perron theorem. Appl. Math. Lett. 121 (2021), Article ID 107425, 7 pages. | DOI | MR | JFM
[14] Řehák, P., Taddei, V.: Solutions of half-linear differential equations in the classes Gamma and Pi. Differ. Integral Equ. 29 (2016), 683-714. | DOI | MR | JFM
[15] Takaŝi, K., Manojlović, J. V.: Asymptotic behavior of solutions of half-linear differential equations and generalized Karamata functions. Georgian Math. J. 28 (2021), 611-636. | DOI | MR | JFM
Cité par Sources :