A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 317-336
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The half-linear differential equation $$ (|u'|^{\alpha }{\rm sgn} u')' = \alpha (\lambda ^{\alpha + 1} + b(t))|u|^{\alpha }{\rm sgn} u, \quad t \geq t_{0}, $$ is considered, where $\alpha $ and $\lambda $ are positive constants and $b(t)$ is a real-valued continuous function on $[t_{0},\infty )$. It is proved that, under a mild integral smallness condition of $b(t)$ which is weaker than the absolutely integrable condition of $b(t)$, the above equation has a nonoscillatory solution $u_{0}(t)$ such that $u_{0}(t) \sim {\rm e}^{- \lambda t}$ and $u_{0}'(t) \sim - \lambda {\rm e}^{- \lambda t}$ ($t \to \infty $), and a nonoscillatory solution $u_{1}(t)$ such that $u_{1}(t) \sim {\rm e}^{\lambda t}$ and $u_{1}'(t) \sim \lambda {\rm e}^{\lambda t}$ ($t \to \infty $).
The half-linear differential equation $$ (|u'|^{\alpha }{\rm sgn} u')' = \alpha (\lambda ^{\alpha + 1} + b(t))|u|^{\alpha }{\rm sgn} u, \quad t \geq t_{0}, $$ is considered, where $\alpha $ and $\lambda $ are positive constants and $b(t)$ is a real-valued continuous function on $[t_{0},\infty )$. It is proved that, under a mild integral smallness condition of $b(t)$ which is weaker than the absolutely integrable condition of $b(t)$, the above equation has a nonoscillatory solution $u_{0}(t)$ such that $u_{0}(t) \sim {\rm e}^{- \lambda t}$ and $u_{0}'(t) \sim - \lambda {\rm e}^{- \lambda t}$ ($t \to \infty $), and a nonoscillatory solution $u_{1}(t)$ such that $u_{1}(t) \sim {\rm e}^{\lambda t}$ and $u_{1}'(t) \sim \lambda {\rm e}^{\lambda t}$ ($t \to \infty $).
DOI :
10.21136/MB.2023.0158-22
Classification :
34C11, 34D05, 34D10
Keywords: half-linear differential equation; nonoscillatory solution; asymptotic form
Keywords: half-linear differential equation; nonoscillatory solution; asymptotic form
@article{10_21136_MB_2023_0158_22,
author = {Naito, Manabu},
title = {A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations},
journal = {Mathematica Bohemica},
pages = {317--336},
year = {2024},
volume = {149},
number = {3},
doi = {10.21136/MB.2023.0158-22},
mrnumber = {4801105},
zbl = {07953706},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0158-22/}
}
TY - JOUR AU - Naito, Manabu TI - A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations JO - Mathematica Bohemica PY - 2024 SP - 317 EP - 336 VL - 149 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0158-22/ DO - 10.21136/MB.2023.0158-22 LA - en ID - 10_21136_MB_2023_0158_22 ER -
%0 Journal Article %A Naito, Manabu %T A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations %J Mathematica Bohemica %D 2024 %P 317-336 %V 149 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0158-22/ %R 10.21136/MB.2023.0158-22 %G en %F 10_21136_MB_2023_0158_22
Naito, Manabu. A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 317-336. doi: 10.21136/MB.2023.0158-22
Cité par Sources :