Keywords: Kirchhoff-Carrier equation; Robin-Dirichlet problem; nonlocal term; Faedo-Galerkin method; linearization method
@article{10_21136_MB_2023_0153_21,
author = {Dzung, Nguyen Vu and Ngoc, Le Thi Phuong and Nhan, Nguyen Huu and Long, Nguyen Thanh},
title = {On a {Kirchhoff-Carrier} equation with nonlinear terms containing a finite number of unknown values},
journal = {Mathematica Bohemica},
pages = {261--285},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0153-21},
mrnumber = {4767012},
zbl = {07893423},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/}
}
TY - JOUR AU - Dzung, Nguyen Vu AU - Ngoc, Le Thi Phuong AU - Nhan, Nguyen Huu AU - Long, Nguyen Thanh TI - On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values JO - Mathematica Bohemica PY - 2024 SP - 261 EP - 285 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/ DO - 10.21136/MB.2023.0153-21 LA - en ID - 10_21136_MB_2023_0153_21 ER -
%0 Journal Article %A Dzung, Nguyen Vu %A Ngoc, Le Thi Phuong %A Nhan, Nguyen Huu %A Long, Nguyen Thanh %T On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values %J Mathematica Bohemica %D 2024 %P 261-285 %V 149 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/ %R 10.21136/MB.2023.0153-21 %G en %F 10_21136_MB_2023_0153_21
Dzung, Nguyen Vu; Ngoc, Le Thi Phuong; Nhan, Nguyen Huu; Long, Nguyen Thanh. On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 261-285. doi: 10.21136/MB.2023.0153-21
[1] Agarwal, R. P.: Boundary Value Problems for Higher Order Differential Equations. World Scientific, Singapore (1986). | DOI | MR | JFM
[2] Andreu-Vaillo, F., Mazón, J. M., Rossi, J. D., Toledo-Melero, J. J.: Nonlocal Diffusion Problems. Mathematical Surveys and Monographs 165. AMS, Providence (2010). | DOI | MR | JFM
[3] Carrier, G. F.: On the non-linear vibration problem of the elastic string. Q. Appl. Math. 3 (1945), 157-165. | DOI | MR | JFM
[4] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A.: Existence and exponential decay for a Kirchhoff-Carrier model with viscosity. J. Math. Anal. Appl. 226 (1998), 40-60. | DOI | MR | JFM
[5] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Soriano, J. A.: Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6 (2001), 701-730. | DOI | MR | JFM
[6] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Soriano, J. A., Filho, J. S. Prates: Existence and asymptotic behaviour for a degenerate Kirchhoff-Carrier model with viscosity and nonlinear boundary conditions. Rev. Mat. Complut. 14 (2001), 177-203. | DOI | MR | JFM
[7] Kafini, M., Messaoudi, S. A.: A blow-up result in a Cauchy viscoelastic problem. Appl. Math. Lett. 21 (2008), 549-553. | DOI | MR | JFM
[8] Kafini, M., Mustafa, M. I.: Blow-up result in a Cauchy viscoelastic problem with strong damping and dispersive. Nonlinear Anal., Real World Appl. 20 (2014), 14-20. | DOI | MR | JFM
[9] Kirchhoff, G.: Vorlesungen über mathematische Physik. Erster Band. Mechanik. B. G. Teubner, Leipzig (1897), German \99999JFM99999 28.0603.01. | MR
[10] Larkin, N. A.: Global regular solutions for the nonhomogeneous Carrier equation. Math. Probl. Eng. 8 (2002), 15-31. | DOI | MR | JFM
[11] Li, Q., He, L.: General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping. Bound. Value Probl. 2018 (2018), Article ID 153, 22 pages. | DOI | MR | JFM
[12] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969), French. | MR | JFM
[13] Long, N. T., Dinh, A. P. N., Diem, T. N.: Linear recursive schemes and asymptotic expansion associated with the Kirchhoff-Carrier operator. J. Math. Anal. Appl. 267 (2002), 116-134. | DOI | MR | JFM
[14] Medeiros, L. A.: On some nonlinear perturbation of Kirchhoff-Carrier operator. Comput. Appl. Math. 13 (1994), 225-233. | MR | JFM
[15] Medeiros, L. A., Limaco, J., Menezes, S. B.: Vibrations of elastic strings: Mathematical aspects. I. J. Comput. Anal. Appl. 4 (2002), 91-127. | DOI | MR | JFM
[16] Medeiros, L. A., Limaco, J., Menezes, S. B.: Vibrations of elastic strings: Mathematical aspects. II. J. Comput. Anal. Appl. 4 (2002), 211-263. | DOI | MR | JFM
[17] Messaoudi, S. A.: Blow up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr. 260 (2003), 58-66. | DOI | MR | JFM
[18] Messaoudi, S. A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal., Theory Methods Appl., Ser. A 69 (2008), 2589-2598. | DOI | MR | JFM
[19] Mustafa, M. I.: General decay result for nonlinear viscoelastic equations. J. Math. Anal. Appl. 457 (2018), 134-152. | DOI | MR | JFM
[20] Nhan, N. H., Ngoc, L. T. P., Long, N. T.: Existence and asymptotic expansion of the weak solution for a wave equation with nonlinear source containing nonlocal term. Bound. Value Probl. 2017 (2017), Article ID 87, 20 pages. | DOI | MR | JFM
[21] Park, J. Y., Bae, J. J.: On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term. Appl. Math. Comput. 129 (2002), 87-105. | DOI | MR | JFM
[22] Park, J. Y., Park, S. H.: General decay for quasilinear viscoelastic equations with nonlinear weak damping. J. Math. Phys. 50 (2009), Article ID 083505, 10 pages. | DOI | MR | JFM
[23] Santos, M. L., Ferreira, J., Pereira, D. C., Raposo, C. A.: Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary. Nonlinear Anal., Theory Methods Appl., Ser. A 54 (2003), 959-976. | DOI | MR | JFM
[24] Showalter, R. E.: Hilbert Space Methods for Partial Differential Equations. Electronic Journal of Differential Equations. Monograph 1. Southwest Texas State University, San Marcos (1994). | MR | JFM
[25] Tatar, N., Zaraï, A.: Exponential stability and blow up for a problem with Balakrishnan-Taylor damping. Demonstr. Math. 44 (2011), 67-90. | DOI | MR | JFM
[26] Wang, Y., Wang, Y.: Exponential energy decay of solutions of viscoelastic wave equations. J. Math. Anal. Appl. 347 (2008), 18-25. | DOI | MR | JFM
[27] Wu, S.-T.: Exponential energy decay of solutions for an integro-differential equation with strong damping. J. Math. Anal. Appl. 364 (2010), 609-617. | DOI | MR | JFM
Cité par Sources :