On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 261-285 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values $u(\eta _{1},t),\cdots ,u(\eta _{q},t)$ with $0\leq \eta _{1}\eta _{2}\cdots \eta _{q}1.$ By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case $({\rm P}_{q})$ of (P) in which the nonlinear term contains the sum $S_{q}[u^{2}](t)=q^{-1}\sum _{i=1}^{q}u^{2}(\frac{(i-1)}{q},t)$. Under suitable conditions, we prove that the solution of $({\rm P}_{q})$ converges to the solution of the corresponding problem $({\rm P}_{\infty })$ as $q\rightarrow \infty $ (in a certain sense), here $({\rm P}_{\infty })$ is defined by $({\rm P}_{q})$ in which $S_{q}[u^{2}](t)$ is replaced by $ \int _{0}^{1}u^{2}( y,t) {\rm d}y.$ The proof is done by using the compactness lemma of Aubin-Lions and the method of continuity with a priori estimates. We end the paper with remarks related to similar problems.
We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values $u(\eta _{1},t),\cdots ,u(\eta _{q},t)$ with $0\leq \eta _{1}\eta _{2}\cdots \eta _{q}1.$ By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case $({\rm P}_{q})$ of (P) in which the nonlinear term contains the sum $S_{q}[u^{2}](t)=q^{-1}\sum _{i=1}^{q}u^{2}(\frac{(i-1)}{q},t)$. Under suitable conditions, we prove that the solution of $({\rm P}_{q})$ converges to the solution of the corresponding problem $({\rm P}_{\infty })$ as $q\rightarrow \infty $ (in a certain sense), here $({\rm P}_{\infty })$ is defined by $({\rm P}_{q})$ in which $S_{q}[u^{2}](t)$ is replaced by $ \int _{0}^{1}u^{2}( y,t) {\rm d}y.$ The proof is done by using the compactness lemma of Aubin-Lions and the method of continuity with a priori estimates. We end the paper with remarks related to similar problems.
DOI : 10.21136/MB.2023.0153-21
Classification : 35A01, 35A02, 35B45, 35L05, 35M11
Keywords: Kirchhoff-Carrier equation; Robin-Dirichlet problem; nonlocal term; Faedo-Galerkin method; linearization method
@article{10_21136_MB_2023_0153_21,
     author = {Dzung, Nguyen Vu and Ngoc, Le Thi Phuong and Nhan, Nguyen Huu and Long, Nguyen Thanh},
     title = {On a {Kirchhoff-Carrier} equation with nonlinear terms containing a finite number of unknown values},
     journal = {Mathematica Bohemica},
     pages = {261--285},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0153-21},
     mrnumber = {4767012},
     zbl = {07893423},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/}
}
TY  - JOUR
AU  - Dzung, Nguyen Vu
AU  - Ngoc, Le Thi Phuong
AU  - Nhan, Nguyen Huu
AU  - Long, Nguyen Thanh
TI  - On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values
JO  - Mathematica Bohemica
PY  - 2024
SP  - 261
EP  - 285
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/
DO  - 10.21136/MB.2023.0153-21
LA  - en
ID  - 10_21136_MB_2023_0153_21
ER  - 
%0 Journal Article
%A Dzung, Nguyen Vu
%A Ngoc, Le Thi Phuong
%A Nhan, Nguyen Huu
%A Long, Nguyen Thanh
%T On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values
%J Mathematica Bohemica
%D 2024
%P 261-285
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/
%R 10.21136/MB.2023.0153-21
%G en
%F 10_21136_MB_2023_0153_21
Dzung, Nguyen Vu; Ngoc, Le Thi Phuong; Nhan, Nguyen Huu; Long, Nguyen Thanh. On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 261-285. doi: 10.21136/MB.2023.0153-21

Cité par Sources :