On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 261-285
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values $u(\eta _{1},t),\cdots ,u(\eta _{q},t)$ with $0\leq \eta _{1}\eta _{2}\cdots \eta _{q}1.$ By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case $({\rm P}_{q})$ of (P) in which the nonlinear term contains the sum $S_{q}[u^{2}](t)=q^{-1}\sum _{i=1}^{q}u^{2}(\frac{(i-1)}{q},t)$. Under suitable conditions, we prove that the solution of $({\rm P}_{q})$ converges to the solution of the corresponding problem $({\rm P}_{\infty })$ as $q\rightarrow \infty $ (in a certain sense), here $({\rm P}_{\infty })$ is defined by $({\rm P}_{q})$ in which $S_{q}[u^{2}](t)$ is replaced by $ \int _{0}^{1}u^{2}( y,t) {\rm d}y.$ The proof is done by using the compactness lemma of Aubin-Lions and the method of continuity with a priori estimates. We end the paper with remarks related to similar problems.
We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values $u(\eta _{1},t),\cdots ,u(\eta _{q},t)$ with $0\leq \eta _{1}\eta _{2}\cdots \eta _{q}1.$ By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case $({\rm P}_{q})$ of (P) in which the nonlinear term contains the sum $S_{q}[u^{2}](t)=q^{-1}\sum _{i=1}^{q}u^{2}(\frac{(i-1)}{q},t)$. Under suitable conditions, we prove that the solution of $({\rm P}_{q})$ converges to the solution of the corresponding problem $({\rm P}_{\infty })$ as $q\rightarrow \infty $ (in a certain sense), here $({\rm P}_{\infty })$ is defined by $({\rm P}_{q})$ in which $S_{q}[u^{2}](t)$ is replaced by $ \int _{0}^{1}u^{2}( y,t) {\rm d}y.$ The proof is done by using the compactness lemma of Aubin-Lions and the method of continuity with a priori estimates. We end the paper with remarks related to similar problems.
DOI :
10.21136/MB.2023.0153-21
Classification :
35A01, 35A02, 35B45, 35L05, 35M11
Keywords: Kirchhoff-Carrier equation; Robin-Dirichlet problem; nonlocal term; Faedo-Galerkin method; linearization method
Keywords: Kirchhoff-Carrier equation; Robin-Dirichlet problem; nonlocal term; Faedo-Galerkin method; linearization method
@article{10_21136_MB_2023_0153_21,
author = {Dzung, Nguyen Vu and Ngoc, Le Thi Phuong and Nhan, Nguyen Huu and Long, Nguyen Thanh},
title = {On a {Kirchhoff-Carrier} equation with nonlinear terms containing a finite number of unknown values},
journal = {Mathematica Bohemica},
pages = {261--285},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0153-21},
mrnumber = {4767012},
zbl = {07893423},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/}
}
TY - JOUR AU - Dzung, Nguyen Vu AU - Ngoc, Le Thi Phuong AU - Nhan, Nguyen Huu AU - Long, Nguyen Thanh TI - On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values JO - Mathematica Bohemica PY - 2024 SP - 261 EP - 285 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/ DO - 10.21136/MB.2023.0153-21 LA - en ID - 10_21136_MB_2023_0153_21 ER -
%0 Journal Article %A Dzung, Nguyen Vu %A Ngoc, Le Thi Phuong %A Nhan, Nguyen Huu %A Long, Nguyen Thanh %T On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values %J Mathematica Bohemica %D 2024 %P 261-285 %V 149 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/ %R 10.21136/MB.2023.0153-21 %G en %F 10_21136_MB_2023_0153_21
Dzung, Nguyen Vu; Ngoc, Le Thi Phuong; Nhan, Nguyen Huu; Long, Nguyen Thanh. On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 261-285. doi: 10.21136/MB.2023.0153-21
Cité par Sources :