On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 261-285
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values $u(\eta _{1},t),\cdots ,u(\eta _{q},t)$ with $0\leq \eta _{1}\eta _{2}\cdots \eta _{q}1.$ By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case $({\rm P}_{q})$ of (P) in which the nonlinear term contains the sum $S_{q}[u^{2}](t)=q^{-1}\sum _{i=1}^{q}u^{2}(\frac{(i-1)}{q},t)$. Under suitable conditions, we prove that the solution of $({\rm P}_{q})$ converges to the solution of the corresponding problem $({\rm P}_{\infty })$ as $q\rightarrow \infty $ (in a certain sense), here $({\rm P}_{\infty })$ is defined by $({\rm P}_{q})$ in which $S_{q}[u^{2}](t)$ is replaced by $ \int _{0}^{1}u^{2}( y,t) {\rm d}y.$ The proof is done by using the compactness lemma of Aubin-Lions and the method of continuity with a priori estimates. We end the paper with remarks related to similar problems.
We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values $u(\eta _{1},t),\cdots ,u(\eta _{q},t)$ with $0\leq \eta _{1}\eta _{2}\cdots \eta _{q}1.$ By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case $({\rm P}_{q})$ of (P) in which the nonlinear term contains the sum $S_{q}[u^{2}](t)=q^{-1}\sum _{i=1}^{q}u^{2}(\frac{(i-1)}{q},t)$. Under suitable conditions, we prove that the solution of $({\rm P}_{q})$ converges to the solution of the corresponding problem $({\rm P}_{\infty })$ as $q\rightarrow \infty $ (in a certain sense), here $({\rm P}_{\infty })$ is defined by $({\rm P}_{q})$ in which $S_{q}[u^{2}](t)$ is replaced by $ \int _{0}^{1}u^{2}( y,t) {\rm d}y.$ The proof is done by using the compactness lemma of Aubin-Lions and the method of continuity with a priori estimates. We end the paper with remarks related to similar problems.
DOI : 10.21136/MB.2023.0153-21
Classification : 35A01, 35A02, 35B45, 35L05, 35M11
Keywords: Kirchhoff-Carrier equation; Robin-Dirichlet problem; nonlocal term; Faedo-Galerkin method; linearization method
@article{10_21136_MB_2023_0153_21,
     author = {Dzung, Nguyen Vu and Ngoc, Le Thi Phuong and Nhan, Nguyen Huu and Long, Nguyen Thanh},
     title = {On a {Kirchhoff-Carrier} equation with nonlinear terms containing a finite number of unknown values},
     journal = {Mathematica Bohemica},
     pages = {261--285},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0153-21},
     mrnumber = {4767012},
     zbl = {07893423},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/}
}
TY  - JOUR
AU  - Dzung, Nguyen Vu
AU  - Ngoc, Le Thi Phuong
AU  - Nhan, Nguyen Huu
AU  - Long, Nguyen Thanh
TI  - On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values
JO  - Mathematica Bohemica
PY  - 2024
SP  - 261
EP  - 285
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/
DO  - 10.21136/MB.2023.0153-21
LA  - en
ID  - 10_21136_MB_2023_0153_21
ER  - 
%0 Journal Article
%A Dzung, Nguyen Vu
%A Ngoc, Le Thi Phuong
%A Nhan, Nguyen Huu
%A Long, Nguyen Thanh
%T On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values
%J Mathematica Bohemica
%D 2024
%P 261-285
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0153-21/
%R 10.21136/MB.2023.0153-21
%G en
%F 10_21136_MB_2023_0153_21
Dzung, Nguyen Vu; Ngoc, Le Thi Phuong; Nhan, Nguyen Huu; Long, Nguyen Thanh. On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 261-285. doi: 10.21136/MB.2023.0153-21

[1] Agarwal, R. P.: Boundary Value Problems for Higher Order Differential Equations. World Scientific, Singapore (1986). | DOI | MR | JFM

[2] Andreu-Vaillo, F., Mazón, J. M., Rossi, J. D., Toledo-Melero, J. J.: Nonlocal Diffusion Problems. Mathematical Surveys and Monographs 165. AMS, Providence (2010). | DOI | MR | JFM

[3] Carrier, G. F.: On the non-linear vibration problem of the elastic string. Q. Appl. Math. 3 (1945), 157-165. | DOI | MR | JFM

[4] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A.: Existence and exponential decay for a Kirchhoff-Carrier model with viscosity. J. Math. Anal. Appl. 226 (1998), 40-60. | DOI | MR | JFM

[5] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Soriano, J. A.: Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6 (2001), 701-730. | DOI | MR | JFM

[6] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Soriano, J. A., Filho, J. S. Prates: Existence and asymptotic behaviour for a degenerate Kirchhoff-Carrier model with viscosity and nonlinear boundary conditions. Rev. Mat. Complut. 14 (2001), 177-203. | DOI | MR | JFM

[7] Kafini, M., Messaoudi, S. A.: A blow-up result in a Cauchy viscoelastic problem. Appl. Math. Lett. 21 (2008), 549-553. | DOI | MR | JFM

[8] Kafini, M., Mustafa, M. I.: Blow-up result in a Cauchy viscoelastic problem with strong damping and dispersive. Nonlinear Anal., Real World Appl. 20 (2014), 14-20. | DOI | MR | JFM

[9] Kirchhoff, G.: Vorlesungen über mathematische Physik. Erster Band. Mechanik. B. G. Teubner, Leipzig (1897), German \99999JFM99999 28.0603.01. | MR

[10] Larkin, N. A.: Global regular solutions for the nonhomogeneous Carrier equation. Math. Probl. Eng. 8 (2002), 15-31. | DOI | MR | JFM

[11] Li, Q., He, L.: General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping. Bound. Value Probl. 2018 (2018), Article ID 153, 22 pages. | DOI | MR | JFM

[12] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969), French. | MR | JFM

[13] Long, N. T., Dinh, A. P. N., Diem, T. N.: Linear recursive schemes and asymptotic expansion associated with the Kirchhoff-Carrier operator. J. Math. Anal. Appl. 267 (2002), 116-134. | DOI | MR | JFM

[14] Medeiros, L. A.: On some nonlinear perturbation of Kirchhoff-Carrier operator. Comput. Appl. Math. 13 (1994), 225-233. | MR | JFM

[15] Medeiros, L. A., Limaco, J., Menezes, S. B.: Vibrations of elastic strings: Mathematical aspects. I. J. Comput. Anal. Appl. 4 (2002), 91-127. | DOI | MR | JFM

[16] Medeiros, L. A., Limaco, J., Menezes, S. B.: Vibrations of elastic strings: Mathematical aspects. II. J. Comput. Anal. Appl. 4 (2002), 211-263. | DOI | MR | JFM

[17] Messaoudi, S. A.: Blow up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr. 260 (2003), 58-66. | DOI | MR | JFM

[18] Messaoudi, S. A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal., Theory Methods Appl., Ser. A 69 (2008), 2589-2598. | DOI | MR | JFM

[19] Mustafa, M. I.: General decay result for nonlinear viscoelastic equations. J. Math. Anal. Appl. 457 (2018), 134-152. | DOI | MR | JFM

[20] Nhan, N. H., Ngoc, L. T. P., Long, N. T.: Existence and asymptotic expansion of the weak solution for a wave equation with nonlinear source containing nonlocal term. Bound. Value Probl. 2017 (2017), Article ID 87, 20 pages. | DOI | MR | JFM

[21] Park, J. Y., Bae, J. J.: On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term. Appl. Math. Comput. 129 (2002), 87-105. | DOI | MR | JFM

[22] Park, J. Y., Park, S. H.: General decay for quasilinear viscoelastic equations with nonlinear weak damping. J. Math. Phys. 50 (2009), Article ID 083505, 10 pages. | DOI | MR | JFM

[23] Santos, M. L., Ferreira, J., Pereira, D. C., Raposo, C. A.: Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary. Nonlinear Anal., Theory Methods Appl., Ser. A 54 (2003), 959-976. | DOI | MR | JFM

[24] Showalter, R. E.: Hilbert Space Methods for Partial Differential Equations. Electronic Journal of Differential Equations. Monograph 1. Southwest Texas State University, San Marcos (1994). | MR | JFM

[25] Tatar, N., Zaraï, A.: Exponential stability and blow up for a problem with Balakrishnan-Taylor damping. Demonstr. Math. 44 (2011), 67-90. | DOI | MR | JFM

[26] Wang, Y., Wang, Y.: Exponential energy decay of solutions of viscoelastic wave equations. J. Math. Anal. Appl. 347 (2008), 18-25. | DOI | MR | JFM

[27] Wu, S.-T.: Exponential energy decay of solutions for an integro-differential equation with strong damping. J. Math. Anal. Appl. 364 (2010), 609-617. | DOI | MR | JFM

Cité par Sources :