The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 295-303
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The minimal nontrivial endomorphism monoids $M={\rm End}{\rm Con} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection ${\rm End}$-${\rm Con}$) to the maximal nontrivial congruence lattices ${\rm Con} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices ${\rm Quord} (A,F)$.
The minimal nontrivial endomorphism monoids $M={\rm End}{\rm Con} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection ${\rm End}$-${\rm Con}$) to the maximal nontrivial congruence lattices ${\rm Con} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices ${\rm Quord} (A,F)$.
DOI : 10.21136/MB.2023.0133-22
Classification : 08A30, 08A35, 08A60
Keywords: endomorphism monoid; congruence lattice; quasiorder lattice; finite algebra
@article{10_21136_MB_2023_0133_22,
     author = {Jakub{\'\i}kov\'a-Studenovsk\'a, Danica and P\"oschel, Reinhard and Radeleczki, S\'andor},
     title = {The minimal closed monoids for the {Galois} connection ${\rm End}$-${\rm Con}$},
     journal = {Mathematica Bohemica},
     pages = {295--303},
     year = {2024},
     volume = {149},
     number = {3},
     doi = {10.21136/MB.2023.0133-22},
     mrnumber = {4801103},
     zbl = {07953704},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0133-22/}
}
TY  - JOUR
AU  - Jakubíková-Studenovská, Danica
AU  - Pöschel, Reinhard
AU  - Radeleczki, Sándor
TI  - The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
JO  - Mathematica Bohemica
PY  - 2024
SP  - 295
EP  - 303
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0133-22/
DO  - 10.21136/MB.2023.0133-22
LA  - en
ID  - 10_21136_MB_2023_0133_22
ER  - 
%0 Journal Article
%A Jakubíková-Studenovská, Danica
%A Pöschel, Reinhard
%A Radeleczki, Sándor
%T The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
%J Mathematica Bohemica
%D 2024
%P 295-303
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0133-22/
%R 10.21136/MB.2023.0133-22
%G en
%F 10_21136_MB_2023_0133_22
Jakubíková-Studenovská, Danica; Pöschel, Reinhard; Radeleczki, Sándor. The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 295-303. doi: 10.21136/MB.2023.0133-22

[1] Halušková, E.: Strong endomorphism kernel property for monounary algebras. Math. Bohem. 143 (2018), 161-171. | DOI | MR | JFM

[2] Halušková, E.: Some monounary algebras with EKP. Math. Bohem. 145 (2020), 401-414. | DOI | MR | JFM

[3] Jakubíková-Studenovská, D.: On congruence relations of monounary algebras I. Czech. Math. J. 32 (1982), 437-459. | DOI | MR | JFM

[4] Jakubíková-Studenovská, D.: On congruence relations of monounary algebras II. Czech. Math. J. 33 (1983), 448-466. | DOI | MR | JFM

[5] Jakubíková-Studenovská, D., Pócs, J.: Monounary Algebras. P. J. Šafárik University, Košice (2009). | JFM

[6] Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S.: The lattice of quasiorder lattices of algebras on a finite set. Algebra Univers. 75 (2016), 197-220. | DOI | MR | JFM

[7] Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S.: The lattice of congruence lattices of algebras on a finite set. Algebra Univers. 79 (2018), Article ID 4, 23 pages. | DOI | MR | JFM

[8] Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S.: The structure of the maximal congruence lattices of algebras on a finite set. J. Mult.-Val. Log. Soft Comput. 36 (2021), 299-320. | MR | JFM

[9] Janičková, L.: Monounary algebras containing subalgebras with meet-irreducible congruence lattice. Algebra Univers. 83 (2022), Article ID 36, 10 pages. | DOI | MR | JFM

[10] Länger, H., Pöschel, R.: Relational systems with trivial endomorphisms and polymorphisms. J. Pure Appl. Algebra 32 (1984), 129-142. | DOI | MR | JFM

[11] Pálfy, P. P.: Unary polynomials in algebras. I. Algebra Univers. 18 (1984), 262-273. | DOI | MR | JFM

[12] Quackenbush, R., Wolk, B.: Strong representation of congruence lattices. Algebra Univers. 1 (1971), 165-166. | DOI | MR | JFM

Cité par Sources :