The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 295-303
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The minimal nontrivial endomorphism monoids $M={\rm End}{\rm Con} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection ${\rm End}$-${\rm Con}$) to the maximal nontrivial congruence lattices ${\rm Con} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices ${\rm Quord} (A,F)$.
The minimal nontrivial endomorphism monoids $M={\rm End}{\rm Con} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection ${\rm End}$-${\rm Con}$) to the maximal nontrivial congruence lattices ${\rm Con} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices ${\rm Quord} (A,F)$.
DOI :
10.21136/MB.2023.0133-22
Classification :
08A30, 08A35, 08A60
Keywords: endomorphism monoid; congruence lattice; quasiorder lattice; finite algebra
Keywords: endomorphism monoid; congruence lattice; quasiorder lattice; finite algebra
@article{10_21136_MB_2023_0133_22,
author = {Jakub{\'\i}kov\'a-Studenovsk\'a, Danica and P\"oschel, Reinhard and Radeleczki, S\'andor},
title = {The minimal closed monoids for the {Galois} connection ${\rm End}$-${\rm Con}$},
journal = {Mathematica Bohemica},
pages = {295--303},
year = {2024},
volume = {149},
number = {3},
doi = {10.21136/MB.2023.0133-22},
mrnumber = {4801103},
zbl = {07953704},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0133-22/}
}
TY - JOUR
AU - Jakubíková-Studenovská, Danica
AU - Pöschel, Reinhard
AU - Radeleczki, Sándor
TI - The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
JO - Mathematica Bohemica
PY - 2024
SP - 295
EP - 303
VL - 149
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0133-22/
DO - 10.21136/MB.2023.0133-22
LA - en
ID - 10_21136_MB_2023_0133_22
ER -
%0 Journal Article
%A Jakubíková-Studenovská, Danica
%A Pöschel, Reinhard
%A Radeleczki, Sándor
%T The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
%J Mathematica Bohemica
%D 2024
%P 295-303
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0133-22/
%R 10.21136/MB.2023.0133-22
%G en
%F 10_21136_MB_2023_0133_22
Jakubíková-Studenovská, Danica; Pöschel, Reinhard; Radeleczki, Sándor. The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 295-303. doi: 10.21136/MB.2023.0133-22
Cité par Sources :