The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 295-303 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The minimal nontrivial endomorphism monoids $M={\rm End}{\rm Con} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection ${\rm End}$-${\rm Con}$) to the maximal nontrivial congruence lattices ${\rm Con} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices ${\rm Quord} (A,F)$.
The minimal nontrivial endomorphism monoids $M={\rm End}{\rm Con} (A,F)$ of congruence lattices of algebras $(A,F)$ defined on a finite set $A$ are described. They correspond (via the Galois connection ${\rm End}$-${\rm Con}$) to the maximal nontrivial congruence lattices ${\rm Con} (A,F)$ investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices ${\rm Quord} (A,F)$.
DOI : 10.21136/MB.2023.0133-22
Classification : 08A30, 08A35, 08A60
Keywords: endomorphism monoid; congruence lattice; quasiorder lattice; finite algebra
@article{10_21136_MB_2023_0133_22,
     author = {Jakub{\'\i}kov\'a-Studenovsk\'a, Danica and P\"oschel, Reinhard and Radeleczki, S\'andor},
     title = {The minimal closed monoids for the {Galois} connection ${\rm End}$-${\rm Con}$},
     journal = {Mathematica Bohemica},
     pages = {295--303},
     year = {2024},
     volume = {149},
     number = {3},
     doi = {10.21136/MB.2023.0133-22},
     mrnumber = {4801103},
     zbl = {07953704},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0133-22/}
}
TY  - JOUR
AU  - Jakubíková-Studenovská, Danica
AU  - Pöschel, Reinhard
AU  - Radeleczki, Sándor
TI  - The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
JO  - Mathematica Bohemica
PY  - 2024
SP  - 295
EP  - 303
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0133-22/
DO  - 10.21136/MB.2023.0133-22
LA  - en
ID  - 10_21136_MB_2023_0133_22
ER  - 
%0 Journal Article
%A Jakubíková-Studenovská, Danica
%A Pöschel, Reinhard
%A Radeleczki, Sándor
%T The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$
%J Mathematica Bohemica
%D 2024
%P 295-303
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0133-22/
%R 10.21136/MB.2023.0133-22
%G en
%F 10_21136_MB_2023_0133_22
Jakubíková-Studenovská, Danica; Pöschel, Reinhard; Radeleczki, Sándor. The minimal closed monoids for the Galois connection ${\rm End}$-${\rm Con}$. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 295-303. doi: 10.21136/MB.2023.0133-22

Cité par Sources :