Non-homogeneous directional equations: Slice solutions belonging to functions of bounded $L$-index in the unit ball
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 247-260
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a given direction ${\bf b}\in \mathbb {C}^n\setminus \{{\bf 0}\}$ we study non-homogeneous directional linear higher-order equations whose all coefficients belong to a class of joint continuous functions which are holomorphic on intersection of all directional slices with a unit ball. Conditions are established providing boundedness of $L$-index in the direction with a positive continuous function $L$ satisfying some behavior conditions in the unit ball. The provided conditions concern every solution belonging to the same class of functions as the coefficients of the equation. Our considerations use some estimates involving a directional logarithmic derivative and distribution of zeros on all directional slices in the unit ball.
For a given direction ${\bf b}\in \mathbb {C}^n\setminus \{{\bf 0}\}$ we study non-homogeneous directional linear higher-order equations whose all coefficients belong to a class of joint continuous functions which are holomorphic on intersection of all directional slices with a unit ball. Conditions are established providing boundedness of $L$-index in the direction with a positive continuous function $L$ satisfying some behavior conditions in the unit ball. The provided conditions concern every solution belonging to the same class of functions as the coefficients of the equation. Our considerations use some estimates involving a directional logarithmic derivative and distribution of zeros on all directional slices in the unit ball.
DOI : 10.21136/MB.2023.0121-22
Classification : 32A10, 32A17, 32A37
Keywords: bounded index; bounded $L$-index in direction; slice function; holomorphic function; directional differential equation; bounded $l$-index; directional derivative; unit ball
@article{10_21136_MB_2023_0121_22,
     author = {Bandura, Andriy and Salo, Tetyana and Skaskiv, Oleh},
     title = {Non-homogeneous directional equations: {Slice} solutions belonging to functions of bounded $L$-index in the unit ball},
     journal = {Mathematica Bohemica},
     pages = {247--260},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0121-22},
     mrnumber = {4767011},
     zbl = {07893422},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0121-22/}
}
TY  - JOUR
AU  - Bandura, Andriy
AU  - Salo, Tetyana
AU  - Skaskiv, Oleh
TI  - Non-homogeneous directional equations: Slice solutions belonging to functions of bounded $L$-index in the unit ball
JO  - Mathematica Bohemica
PY  - 2024
SP  - 247
EP  - 260
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0121-22/
DO  - 10.21136/MB.2023.0121-22
LA  - en
ID  - 10_21136_MB_2023_0121_22
ER  - 
%0 Journal Article
%A Bandura, Andriy
%A Salo, Tetyana
%A Skaskiv, Oleh
%T Non-homogeneous directional equations: Slice solutions belonging to functions of bounded $L$-index in the unit ball
%J Mathematica Bohemica
%D 2024
%P 247-260
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0121-22/
%R 10.21136/MB.2023.0121-22
%G en
%F 10_21136_MB_2023_0121_22
Bandura, Andriy; Salo, Tetyana; Skaskiv, Oleh. Non-homogeneous directional equations: Slice solutions belonging to functions of bounded $L$-index in the unit ball. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 247-260. doi: 10.21136/MB.2023.0121-22

[1] Baksa, V., Bandura, A., Skaskiv, O.: Analogs of Hayman's theorem and of logarithmic criterion for analytic vector-valued functions in the unit ball having bounded $L$-index in joint variables. Math. Slovaca 70 (2020), 1141-1152. | DOI | MR | JFM

[2] Bandura, A., Martsinkiv, M., Skaskiv, O.: Slice holomorphic functions in the unit ball having a bounded $L$-index in direction. Axioms 10 (2021), Article ID 4, 15 pages. | DOI | MR

[3] Bandura, A. I., Salo, T. M., Skaskiv, O. B.: Slice holomorphic functions in the unit ball: Boundedness of $L$-index in a direction and related properties. Mat. Stud. 57 (2022), 68-78. | DOI | MR | JFM

[4] Bandura, A., Shegda, L., Skaskiv, O., Smolovyk, L.: Some criteria of boundedness of $L$-index in a direction for slice holomorphic functions in the unit ball. Int. J. Appl. Math. 34 (2021), 775-793. | DOI | MR

[5] Bandura, A., Skaskiv, O.: Boundedness of the $L$-index in a direction of entire solutions of second order partial differential equation. Acta Comment. Univ. Tartu. Math. 22 (2018), 223-234. | DOI | MR | JFM

[6] Bandura, A., Skaskiv, O.: Analog of Hayman's theorem and its application to some system of linear partial differential equations. J. Math. Phys. Anal. Geom. 15 (2019), 170-191. | DOI | MR | JFM

[7] Bandura, A., Skaskiv, O.: Linear directional differential equations in the unit ball: Solutions of bounded $L$-index. Math. Slovaca 69 (2019), 1089-1098. | DOI | MR | JFM

[8] Bandura, A., Skaskiv, O.: Slice holomorphic functions in several variables with bounded $L$-index in direction. Axioms 8 (2019), Article ID 88, 12 pages. | DOI | JFM

[9] Bandura, A., Skaskiv, O.: Some criteria of boundedness of the $L$-index in direction for slice holomorphic functions of several complex variables. J. Math. Sci., New York 244 (2020), 1-21. | DOI | MR | JFM

[10] Bandura, A., Skaskiv, O., Filevych, P.: Properties of entire solutions of some linear PDE's. J. Appl. Math. Comput. Mech. 16 (2017), 17-28. | DOI | MR

[11] Bandura, A., Skaskiv, O., Smolovyk, L.: Slice holomorphic solutions of some directional differential equations with bounded $L$-index in the same direction. Demonstr. Math. 52 (2019), 482-489. | DOI | MR | JFM

[12] Bordulyak, M. T.: A proof of Sheremeta's conjecture concerning entire function of bounded $l$-index. Mat. Stud. 12 (1999), 108-110. | MR | JFM

[13] Bordulyak, M. T., Sheremeta, M. M.: On the existence of entire functions of bounded $l$-index and $l$-regular growth. Ukr. Math. J. 48 (1996), 1322-1340. | DOI | MR | JFM

[14] Fricke, G. H.: Functions of bounded index and their logarithmic derivatives. Math. Ann. 206 (1973), 215-223. | DOI | MR | JFM

[15] Fricke, G. H.: Entire functions of locally slow growth. J. Anal. Math. 28 (1975), 101-122. | DOI | JFM

[16] Hayman, W. K.: Differential inequalities and local valency. Pac. J. Math. 44 (1973), 117-137. | DOI | MR | JFM

[17] Hural, I. M.: About some problem for entire functions of unbounded index in any direction. Mat. Stud. 51 (2019), 107-110. | DOI | MR | JFM

[18] Kuzyk, A. D., Sheremeta, M. N.: Entire functions of bounded $l$-distribution of values. Math. Notes 39 (1986), 3-8. | DOI | MR | JFM

[19] Kuzyk, A. D., Sheremeta, M. N.: Entire functions satisfying linear differential equations. Differ. Equations 26 (1990), 1268-1273. | MR | JFM

[20] Lepson, B.: Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index. Entire Functions and Related Parts of Analysis Proceedings of Symposia in Pure Mathematics 11. AMS, Providence (1968), 298-307 \99999MR99999 0237788 . | MR | JFM

[21] MacDonnell, J. J.: Some Convergence Theorems for Dirichlet-type Series Whose Coefficients Are Entire Functions of Bounded Index: Doctoral Dissertation. Catholic University of America, Washington (1957). | MR

[22] Nuray, F., Patterson, R. F.: Multivalence of bivariate functions of bounded index. Matematiche 70 (2015), 225-233. | DOI | MR | JFM

[23] Nuray, F., Patterson, R. F.: Vector-valued bivariate entire functions of bounded index satisfying a system of differential equations. Mat. Stud. 49 (2018), 67-74. | DOI | MR | JFM

[24] Shah, S. M.: Entire functions of bounded index. Proc. Am. Math. Soc. 19 (1968), 1017-1022. | DOI | MR | JFM

[25] Shah, S. M.: Entire functions satisfying a linear differential equation. J. Math. Mech. 18 (1969), 131-136. | DOI | MR | JFM

[26] Shah, S. M.: Entire function of bounded index. Complex Analysis Lecture Notes in Mathematics 599. Springer, Berlin (1977), 117-145. | DOI | MR | JFM

[27] Sheremeta, M. M.: Generalization of the fricke theorem on entire functions of finite index. Ukr. Math. J. 48 (1996), 460-466. | DOI | MR | JFM

[28] Sheremeta, M.: Analytic Functions of Bounded Index. Mathematical Studies Monograph Series 6. VNTL Publishers, Lviv (1999). | MR | JFM

[29] Sheremeta, M. M.: On the $l$-index boundedness of some composition of functions. Mat. Stud. 47 (2017), 207-210. | DOI | MR | JFM

[30] Sheremeta, M. M., Bordulyak, M. T.: Boundedness of the $l$-index of Laguerre-Pólya entire functions. Ukr. Math. J. 55 (2003), 112-125 \99999DOI99999 10.1023/A:1025076720052 . | MR | JFM

[31] Strelitz, S.: Asymptotic properties of entire transcendental solutions of algebraic differential equations. Value Distribution Theory and Its Applications Contemporary Mathematics 25. AMS, Providence (1983), 171-214. | DOI | MR | JFM

Cité par Sources :