Keywords: complemented poset; antitone involution; ideal; filter; ultrafilter; c-ideal; c-filter; c-condition; separation theorem
@article{10_21136_MB_2023_0108_22,
author = {Chajda, Ivan and Kola\v{r}{\'\i}k, Miroslav and L\"anger, Helmut},
title = {c-ideals in complemented posets},
journal = {Mathematica Bohemica},
pages = {305--316},
year = {2024},
volume = {149},
number = {3},
doi = {10.21136/MB.2023.0108-22},
mrnumber = {4801104},
zbl = {07953705},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0108-22/}
}
TY - JOUR AU - Chajda, Ivan AU - Kolařík, Miroslav AU - Länger, Helmut TI - c-ideals in complemented posets JO - Mathematica Bohemica PY - 2024 SP - 305 EP - 316 VL - 149 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0108-22/ DO - 10.21136/MB.2023.0108-22 LA - en ID - 10_21136_MB_2023_0108_22 ER -
Chajda, Ivan; Kolařík, Miroslav; Länger, Helmut. c-ideals in complemented posets. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 305-316. doi: 10.21136/MB.2023.0108-22
[1] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications 25. AMS, Providence (1979). | MR | JFM
[2] Chajda, I., Länger, H.: Filters and congruences in sectionally pseudocomplemented lattices and posets. Soft Comput. 25 (2021), 8827-8837. | DOI | JFM
[3] Chajda, I., Länger, H.: Filters and ideals in pseudocomplemented posets. Available at , 14 pages. | arXiv
[4] Grätzer, G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011). | DOI | MR | JFM
[5] Larmerová, J., Rachůnek, J.: Translations of distributive and modular ordered sets. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat. Math. 27 (1988), 13-23. | MR | JFM
[6] Nimbhorkar, S. K., Nehete, J. Y.: $\delta$-ideals in pseudo-complemented distributive join-semilattices. Asian-Eur. J. Math. 14 (2021), Article ID 2150106, 7 pages. | DOI | MR | JFM
[7] Rao, M. S.: $\delta$-ideals in pseudo-complemented distributive lattices. Arch. Math., Brno 48 (2012), 97-105. | DOI | MR | JFM
[8] Talukder, M. R., Chakraborty, H. S., Begum, S. N.: $\delta$-ideals of a pseudocomplemented semilattice. Afr. Mat. 32 (2021), 419-429. | DOI | MR | JFM
Cité par Sources :