A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 237-246
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.
A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.
DOI : 10.21136/MB.2023.0102-22
Classification : 11A25, 11B39
Keywords: Fibonacci sequence; multiplicative arithmetic function; Binet's formula; Busche-Ramanujan identities; Möbius inversion
@article{10_21136_MB_2023_0102_22,
     author = {Schwab, Emil Daniel and Schwab, Gabriela},
     title = {A note on $(a,b)${-Fibonacci} sequences and specially multiplicative arithmetic functions},
     journal = {Mathematica Bohemica},
     pages = {237--246},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0102-22},
     mrnumber = {4767010},
     zbl = {07893421},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/}
}
TY  - JOUR
AU  - Schwab, Emil Daniel
AU  - Schwab, Gabriela
TI  - A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions
JO  - Mathematica Bohemica
PY  - 2024
SP  - 237
EP  - 246
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/
DO  - 10.21136/MB.2023.0102-22
LA  - en
ID  - 10_21136_MB_2023_0102_22
ER  - 
%0 Journal Article
%A Schwab, Emil Daniel
%A Schwab, Gabriela
%T A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions
%J Mathematica Bohemica
%D 2024
%P 237-246
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/
%R 10.21136/MB.2023.0102-22
%G en
%F 10_21136_MB_2023_0102_22
Schwab, Emil Daniel; Schwab, Gabriela. A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 237-246. doi: 10.21136/MB.2023.0102-22

[1] Apostol, T. M.: Möbius functions of order $k$. Pac. J. Math. 32 (1970), 21-27. | DOI | MR | JFM

[2] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). | DOI | MR | JFM

[3] Brown, T. C., Hsu, L. C., Wang, J., Shiue, P. J.-S.: On a certain kind of generalized number-theoretical Möbius function. Math. Sci. 25 (2000), 72-77. | MR | JFM

[4] Catarino, P.: On some identities and generating functions for $k$-Pell numbers. Int. J. Math. Anal., Ruse 7 (2013), 1877-1884. | DOI | MR | JFM

[5] Cohen, E.: Arithmetical notes. X: A class of totients. Proc. Am. Math. Soc. 15 (1964), 534-539. | DOI | MR | JFM

[6] Falcón, S., Plaza, Á.: The $k$-Fibonacci sequence and the Pascal 2-triangle. Chaos Solitons Fractals 33 (2007), 38-49. | DOI | MR | JFM

[7] Haukkanen, P.: A note on specially multiplicative arithmetic functions. Fibonacci Q. 26 (1988), 325-327. | DOI | MR | JFM

[8] Horadam, A. F.: Basic properties of a certain generalized sequence of numbers. Fibonacci Q. 3 (1965), 161-176. | DOI | MR | JFM

[9] Horadam, A. F.: Generating functions for powers of certain generalized sequences of numbers. Duke Math. J. 32 (1965), 437-446. | DOI | MR | JFM

[10] Hsu, L. C.: A difference-operational approach to the Möbius inversion formulas. Fibonacci Q. 33 (1995), 169-173. | DOI | MR | JFM

[11] Jhala, D., Sisodiya, K., Rathore, G. P. S.: On some identities for $k$-Jacobsthal numbers. Int. J. Math. Anal., Ruse 7 (2013), 551-556. | DOI | MR | JFM

[12] Kalman, D., Mena, R.: The Fibonacci numbers---exposed. Math. Mag. 76 (2003), 167-181. | DOI | MR | JFM

[13] McCarthy, P. J.: Introduction to Arithmetical Functions. Universitext. Springer, New York (1986). | DOI | MR | JFM

[14] McCarthy, P. J., Sivaramakrishnan, R.: Generalized Fibonacci sequences via arithmetical functions. Fibonacci Q. 28 (1990), 363-370. | DOI | MR | JFM

[15] Sastry, K. P. R.: On the generalized type Möbius functions. Math. Stud. 31 (1963), 85-88. | MR | JFM

[16] Schwab, E. D., Schwab, G.: $k$-Fibonacci numbers and Möbius functions. Integers 22 (2022), Article ID A64, 11 pages. | MR | JFM

Cité par Sources :