A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 237-246
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.
A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.
DOI :
10.21136/MB.2023.0102-22
Classification :
11A25, 11B39
Keywords: Fibonacci sequence; multiplicative arithmetic function; Binet's formula; Busche-Ramanujan identities; Möbius inversion
Keywords: Fibonacci sequence; multiplicative arithmetic function; Binet's formula; Busche-Ramanujan identities; Möbius inversion
@article{10_21136_MB_2023_0102_22,
author = {Schwab, Emil Daniel and Schwab, Gabriela},
title = {A note on $(a,b)${-Fibonacci} sequences and specially multiplicative arithmetic functions},
journal = {Mathematica Bohemica},
pages = {237--246},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0102-22},
mrnumber = {4767010},
zbl = {07893421},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/}
}
TY - JOUR AU - Schwab, Emil Daniel AU - Schwab, Gabriela TI - A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions JO - Mathematica Bohemica PY - 2024 SP - 237 EP - 246 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/ DO - 10.21136/MB.2023.0102-22 LA - en ID - 10_21136_MB_2023_0102_22 ER -
%0 Journal Article %A Schwab, Emil Daniel %A Schwab, Gabriela %T A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions %J Mathematica Bohemica %D 2024 %P 237-246 %V 149 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/ %R 10.21136/MB.2023.0102-22 %G en %F 10_21136_MB_2023_0102_22
Schwab, Emil Daniel; Schwab, Gabriela. A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 237-246. doi: 10.21136/MB.2023.0102-22
Cité par Sources :