Keywords: Fibonacci sequence; multiplicative arithmetic function; Binet's formula; Busche-Ramanujan identities; Möbius inversion
@article{10_21136_MB_2023_0102_22,
author = {Schwab, Emil Daniel and Schwab, Gabriela},
title = {A note on $(a,b)${-Fibonacci} sequences and specially multiplicative arithmetic functions},
journal = {Mathematica Bohemica},
pages = {237--246},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0102-22},
mrnumber = {4767010},
zbl = {07893421},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/}
}
TY - JOUR AU - Schwab, Emil Daniel AU - Schwab, Gabriela TI - A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions JO - Mathematica Bohemica PY - 2024 SP - 237 EP - 246 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/ DO - 10.21136/MB.2023.0102-22 LA - en ID - 10_21136_MB_2023_0102_22 ER -
%0 Journal Article %A Schwab, Emil Daniel %A Schwab, Gabriela %T A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions %J Mathematica Bohemica %D 2024 %P 237-246 %V 149 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/ %R 10.21136/MB.2023.0102-22 %G en %F 10_21136_MB_2023_0102_22
Schwab, Emil Daniel; Schwab, Gabriela. A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 237-246. doi: 10.21136/MB.2023.0102-22
[1] Apostol, T. M.: Möbius functions of order $k$. Pac. J. Math. 32 (1970), 21-27. | DOI | MR | JFM
[2] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). | DOI | MR | JFM
[3] Brown, T. C., Hsu, L. C., Wang, J., Shiue, P. J.-S.: On a certain kind of generalized number-theoretical Möbius function. Math. Sci. 25 (2000), 72-77. | MR | JFM
[4] Catarino, P.: On some identities and generating functions for $k$-Pell numbers. Int. J. Math. Anal., Ruse 7 (2013), 1877-1884. | DOI | MR | JFM
[5] Cohen, E.: Arithmetical notes. X: A class of totients. Proc. Am. Math. Soc. 15 (1964), 534-539. | DOI | MR | JFM
[6] Falcón, S., Plaza, Á.: The $k$-Fibonacci sequence and the Pascal 2-triangle. Chaos Solitons Fractals 33 (2007), 38-49. | DOI | MR | JFM
[7] Haukkanen, P.: A note on specially multiplicative arithmetic functions. Fibonacci Q. 26 (1988), 325-327. | DOI | MR | JFM
[8] Horadam, A. F.: Basic properties of a certain generalized sequence of numbers. Fibonacci Q. 3 (1965), 161-176. | DOI | MR | JFM
[9] Horadam, A. F.: Generating functions for powers of certain generalized sequences of numbers. Duke Math. J. 32 (1965), 437-446. | DOI | MR | JFM
[10] Hsu, L. C.: A difference-operational approach to the Möbius inversion formulas. Fibonacci Q. 33 (1995), 169-173. | DOI | MR | JFM
[11] Jhala, D., Sisodiya, K., Rathore, G. P. S.: On some identities for $k$-Jacobsthal numbers. Int. J. Math. Anal., Ruse 7 (2013), 551-556. | DOI | MR | JFM
[12] Kalman, D., Mena, R.: The Fibonacci numbers---exposed. Math. Mag. 76 (2003), 167-181. | DOI | MR | JFM
[13] McCarthy, P. J.: Introduction to Arithmetical Functions. Universitext. Springer, New York (1986). | DOI | MR | JFM
[14] McCarthy, P. J., Sivaramakrishnan, R.: Generalized Fibonacci sequences via arithmetical functions. Fibonacci Q. 28 (1990), 363-370. | DOI | MR | JFM
[15] Sastry, K. P. R.: On the generalized type Möbius functions. Math. Stud. 31 (1963), 85-88. | MR | JFM
[16] Schwab, E. D., Schwab, G.: $k$-Fibonacci numbers and Möbius functions. Integers 22 (2022), Article ID A64, 11 pages. | MR | JFM
Cité par Sources :