A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 237-246 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.
A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.
DOI : 10.21136/MB.2023.0102-22
Classification : 11A25, 11B39
Keywords: Fibonacci sequence; multiplicative arithmetic function; Binet's formula; Busche-Ramanujan identities; Möbius inversion
@article{10_21136_MB_2023_0102_22,
     author = {Schwab, Emil Daniel and Schwab, Gabriela},
     title = {A note on $(a,b)${-Fibonacci} sequences and specially multiplicative arithmetic functions},
     journal = {Mathematica Bohemica},
     pages = {237--246},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0102-22},
     mrnumber = {4767010},
     zbl = {07893421},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/}
}
TY  - JOUR
AU  - Schwab, Emil Daniel
AU  - Schwab, Gabriela
TI  - A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions
JO  - Mathematica Bohemica
PY  - 2024
SP  - 237
EP  - 246
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/
DO  - 10.21136/MB.2023.0102-22
LA  - en
ID  - 10_21136_MB_2023_0102_22
ER  - 
%0 Journal Article
%A Schwab, Emil Daniel
%A Schwab, Gabriela
%T A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions
%J Mathematica Bohemica
%D 2024
%P 237-246
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0102-22/
%R 10.21136/MB.2023.0102-22
%G en
%F 10_21136_MB_2023_0102_22
Schwab, Emil Daniel; Schwab, Gabriela. A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 237-246. doi: 10.21136/MB.2023.0102-22

Cité par Sources :