Keywords: auxiliary functions; $p(t)$-Laplacian systems; periodic solution; (C) condition; generalized mountain pass theorem
@article{10_21136_MB_2023_0096_22,
author = {Wang, Zhiyong and Qian, Zhengya},
title = {Periodic solutions for a class of non-autonomous {Hamiltonian} systems with $p(t)${-Laplacian}},
journal = {Mathematica Bohemica},
pages = {185--208},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0096-22},
mrnumber = {4767007},
zbl = {07893418},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0096-22/}
}
TY - JOUR AU - Wang, Zhiyong AU - Qian, Zhengya TI - Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian JO - Mathematica Bohemica PY - 2024 SP - 185 EP - 208 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0096-22/ DO - 10.21136/MB.2023.0096-22 LA - en ID - 10_21136_MB_2023_0096_22 ER -
%0 Journal Article %A Wang, Zhiyong %A Qian, Zhengya %T Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian %J Mathematica Bohemica %D 2024 %P 185-208 %V 149 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0096-22/ %R 10.21136/MB.2023.0096-22 %G en %F 10_21136_MB_2023_0096_22
Wang, Zhiyong; Qian, Zhengya. Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 185-208. doi: 10.21136/MB.2023.0096-22
[1] Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some problems with "strong" resonance at infinity. Nonlinear Anal., Theory Methods Appl. 7 (1983), 981-1012. | DOI | MR | JFM
[2] Cerami, G.: An existence criterion for the critical points on unbounded manifolds. Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian. | MR | JFM
[3] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM
[4] Fan, X.-L., Fan, X.: A Knobloch-type result for $p(t)$-Laplacian systems. J. Math. Anal. Appl. 282 (2003), 453-464. | DOI | MR | JFM
[5] Faraci, F., Livrea, R.: Infinitely many periodic solutions for a second-order nonautonomous system. Nonlinear Anal., Theory Methods Appl., Ser. A 54 (2003), 417-429. | DOI | MR | JFM
[6] Fei, G.: On periodic solutions of superquadratic Hamiltonian systems. Electron. J. Differ. Equ. 2002 (2002), Article ID 8, 12 pages. | MR | JFM
[7] Jiang, Q., Tang, C.-L.: Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems. J. Math. Anal. Appl. 328 (2007), 380-389. | DOI | MR | JFM
[8] Li, C., Ou, Z.-Q., Tang, C.-L.: Three periodic solutions for $p$-Hamiltonian systems. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 1596-1606. | DOI | MR | JFM
[9] Lian, H., Wang, D., Bai, Z., Agarwal, R. P.: Periodic and subharmonic solutions for a class of second-order $p$-Laplacian Hamiltonian systems. Bound. Value Probl. 2014 (2014), Article ID 260, 15 pages. | DOI | MR | JFM
[10] Liu, C., Zhong, Y.: Infinitely many periodic solutions for ordinary $p(t)$-Laplacian differential systems. Electron Res. Arch. 30 (2022), 1653-1667. | DOI | MR
[11] Ma, S., Zhang, Y.: Existence of infinitely many periodic solutions for ordinary $p$-Laplacian systems. J. Math. Anal. Appl. 351 (2009), 469-479. | DOI | MR | JFM
[12] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences 74. Springer, New York (1989). | DOI | MR | JFM
[13] Ou, Z.-Q., Tang, C.-L.: Periodic and subharmonic solutions for a class of superquadratic Hamiltonian systems. Nonlinear Anal., Theory Methods Appl., Ser. A 58 (2004), 245-258. | DOI | MR | JFM
[14] Pipan, J., Schechter, M.: Non-autonomous second order Hamiltonian systems. J. Differ. Equations 257 (2014), 351-373. | DOI | MR | JFM
[15] Rabinowitz, P.: On subharmonic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 33 (1980), 609-633. | DOI | MR | JFM
[16] Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. AMS, Providence (1986). | DOI | MR | JFM
[17] Schechter, M.: Periodic non-autonomous second-order dynamical systems. J. Differ. Equations 223 (2006), 290-302. | DOI | MR | JFM
[18] Tang, C.-L., Wu, X.-P.: Periodic solutions for a class of new superquadratic second order Hamiltonian systems. Appl. Math. Lett. 34 (2014), 65-71. | DOI | MR | JFM
[19] Tang, X. H., Jiang, J.: Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian systems. Comput. Math. Appl. 59 (2010), 3646-3655. | DOI | MR | JFM
[20] Tao, Z.-L., Tang, C.-L.: Periodic and subharmonic solutions of second-order Hamiltonian systems. J. Math. Anal. Appl. 293 (2004), 435-445. | DOI | MR | JFM
[21] Tian, Y., Ge, W.: Periodic solutions of non-autonomous second-order systems with a $p$-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 192-203. | DOI | MR | JFM
[22] Wang, X.-J., Yuan, R.: Existence of periodic solutions for $p(t)$-Laplacian systems. Nonlinear Anal., Theory Methods Appl., Ser. A 70 (2009), 866-880. | DOI | MR | JFM
[23] Wang, Z., Zhang, J.: Existence of periodic solutions for a class of damped vibration problems. C. R., Math., Acad. Sci. Paris 356 (2018), 597-612. | DOI | MR | JFM
[24] Wang, Z., Zhang, J.: New existence results on periodic solutions of non-autonomous second order Hamiltonian systems. Appl. Math. Lett. 79 (2018), 43-50. | DOI | MR | JFM
[25] Xu, B., Tang, C.-L.: Some existence results on periodic solutions of ordinary $p$-Laplacian systems. J. Math. Anal. Appl. 333 (2007), 1228-1236. | DOI | MR | JFM
[26] Zhang, L., Tang, X. H., Chen, J.: Infinitely many periodic solutions for some second-order differential systems with $p(t)$-Laplacian. Bound. Value Probl. 2011 (2011), Article ID 33, 15 pages. | DOI | MR | JFM
[27] Zhang, Q., Tang, X. H.: On the existence of infinitely many periodic solutions for second-order ordinary $p$-Laplacian systems. Bull. Belg. Math. Soc. - Simon Stevin 19 (2012), 121-136. | DOI | MR | JFM
[28] Zhang, S.: Periodic solutions for a class of second order Hamiltonian systems with $p(t)$-Laplacian. Bound. Value Probl. 2016 (2016), Article ID 211, 20 pages. | DOI | MR | JFM
[29] Zhang, X., Tang, X.: Existence of subharmonic solutions for non-quadratic second-order Hamiltonian systems. Bound. Value Probl. 2013 (2013), Article ID 139, 25 pages. | DOI | MR | JFM
[30] Zhang, Y., Ma, S.: Some existence results on periodic and subharmonic solutions of ordinary $p$-Laplacian systems. Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 251-260. | DOI | MR | JFM
[31] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. | DOI | MR | JFM
[32] Zou, W.: Multiple solutions for second-order Hamiltonian systems via computation of the critical groups. Nonlinear Anal., Theory Methods Appl., Ser. A 44 (2001), 975-989. | DOI | MR | JFM
Cité par Sources :