Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 185-208
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the existence of infinitely many periodic solutions for the $p(t)$-Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series of new super-$p^+$ growth and asymptotic-$p^+$ growth conditions. Using the minimax methods in critical point theory, some multiplicity theorems are established, which unify and generalize some known results in the literature. Meanwhile, we also present an example to illustrate our main results are new even in the case $p(t)\equiv p=2$.
We investigate the existence of infinitely many periodic solutions for the $p(t)$-Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series of new super-$p^+$ growth and asymptotic-$p^+$ growth conditions. Using the minimax methods in critical point theory, some multiplicity theorems are established, which unify and generalize some known results in the literature. Meanwhile, we also present an example to illustrate our main results are new even in the case $p(t)\equiv p=2$.
DOI : 10.21136/MB.2023.0096-22
Classification : 34C25, 35A15
Keywords: auxiliary functions; $p(t)$-Laplacian systems; periodic solution; (C) condition; generalized mountain pass theorem
@article{10_21136_MB_2023_0096_22,
     author = {Wang, Zhiyong and Qian, Zhengya},
     title = {Periodic solutions for a class of non-autonomous {Hamiltonian} systems with $p(t)${-Laplacian}},
     journal = {Mathematica Bohemica},
     pages = {185--208},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0096-22},
     mrnumber = {4767007},
     zbl = {07893418},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0096-22/}
}
TY  - JOUR
AU  - Wang, Zhiyong
AU  - Qian, Zhengya
TI  - Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian
JO  - Mathematica Bohemica
PY  - 2024
SP  - 185
EP  - 208
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0096-22/
DO  - 10.21136/MB.2023.0096-22
LA  - en
ID  - 10_21136_MB_2023_0096_22
ER  - 
%0 Journal Article
%A Wang, Zhiyong
%A Qian, Zhengya
%T Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian
%J Mathematica Bohemica
%D 2024
%P 185-208
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0096-22/
%R 10.21136/MB.2023.0096-22
%G en
%F 10_21136_MB_2023_0096_22
Wang, Zhiyong; Qian, Zhengya. Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 185-208. doi: 10.21136/MB.2023.0096-22

[1] Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some problems with "strong" resonance at infinity. Nonlinear Anal., Theory Methods Appl. 7 (1983), 981-1012. | DOI | MR | JFM

[2] Cerami, G.: An existence criterion for the critical points on unbounded manifolds. Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian. | MR | JFM

[3] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM

[4] Fan, X.-L., Fan, X.: A Knobloch-type result for $p(t)$-Laplacian systems. J. Math. Anal. Appl. 282 (2003), 453-464. | DOI | MR | JFM

[5] Faraci, F., Livrea, R.: Infinitely many periodic solutions for a second-order nonautonomous system. Nonlinear Anal., Theory Methods Appl., Ser. A 54 (2003), 417-429. | DOI | MR | JFM

[6] Fei, G.: On periodic solutions of superquadratic Hamiltonian systems. Electron. J. Differ. Equ. 2002 (2002), Article ID 8, 12 pages. | MR | JFM

[7] Jiang, Q., Tang, C.-L.: Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems. J. Math. Anal. Appl. 328 (2007), 380-389. | DOI | MR | JFM

[8] Li, C., Ou, Z.-Q., Tang, C.-L.: Three periodic solutions for $p$-Hamiltonian systems. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 1596-1606. | DOI | MR | JFM

[9] Lian, H., Wang, D., Bai, Z., Agarwal, R. P.: Periodic and subharmonic solutions for a class of second-order $p$-Laplacian Hamiltonian systems. Bound. Value Probl. 2014 (2014), Article ID 260, 15 pages. | DOI | MR | JFM

[10] Liu, C., Zhong, Y.: Infinitely many periodic solutions for ordinary $p(t)$-Laplacian differential systems. Electron Res. Arch. 30 (2022), 1653-1667. | DOI | MR

[11] Ma, S., Zhang, Y.: Existence of infinitely many periodic solutions for ordinary $p$-Laplacian systems. J. Math. Anal. Appl. 351 (2009), 469-479. | DOI | MR | JFM

[12] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences 74. Springer, New York (1989). | DOI | MR | JFM

[13] Ou, Z.-Q., Tang, C.-L.: Periodic and subharmonic solutions for a class of superquadratic Hamiltonian systems. Nonlinear Anal., Theory Methods Appl., Ser. A 58 (2004), 245-258. | DOI | MR | JFM

[14] Pipan, J., Schechter, M.: Non-autonomous second order Hamiltonian systems. J. Differ. Equations 257 (2014), 351-373. | DOI | MR | JFM

[15] Rabinowitz, P.: On subharmonic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 33 (1980), 609-633. | DOI | MR | JFM

[16] Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. AMS, Providence (1986). | DOI | MR | JFM

[17] Schechter, M.: Periodic non-autonomous second-order dynamical systems. J. Differ. Equations 223 (2006), 290-302. | DOI | MR | JFM

[18] Tang, C.-L., Wu, X.-P.: Periodic solutions for a class of new superquadratic second order Hamiltonian systems. Appl. Math. Lett. 34 (2014), 65-71. | DOI | MR | JFM

[19] Tang, X. H., Jiang, J.: Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian systems. Comput. Math. Appl. 59 (2010), 3646-3655. | DOI | MR | JFM

[20] Tao, Z.-L., Tang, C.-L.: Periodic and subharmonic solutions of second-order Hamiltonian systems. J. Math. Anal. Appl. 293 (2004), 435-445. | DOI | MR | JFM

[21] Tian, Y., Ge, W.: Periodic solutions of non-autonomous second-order systems with a $p$-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 192-203. | DOI | MR | JFM

[22] Wang, X.-J., Yuan, R.: Existence of periodic solutions for $p(t)$-Laplacian systems. Nonlinear Anal., Theory Methods Appl., Ser. A 70 (2009), 866-880. | DOI | MR | JFM

[23] Wang, Z., Zhang, J.: Existence of periodic solutions for a class of damped vibration problems. C. R., Math., Acad. Sci. Paris 356 (2018), 597-612. | DOI | MR | JFM

[24] Wang, Z., Zhang, J.: New existence results on periodic solutions of non-autonomous second order Hamiltonian systems. Appl. Math. Lett. 79 (2018), 43-50. | DOI | MR | JFM

[25] Xu, B., Tang, C.-L.: Some existence results on periodic solutions of ordinary $p$-Laplacian systems. J. Math. Anal. Appl. 333 (2007), 1228-1236. | DOI | MR | JFM

[26] Zhang, L., Tang, X. H., Chen, J.: Infinitely many periodic solutions for some second-order differential systems with $p(t)$-Laplacian. Bound. Value Probl. 2011 (2011), Article ID 33, 15 pages. | DOI | MR | JFM

[27] Zhang, Q., Tang, X. H.: On the existence of infinitely many periodic solutions for second-order ordinary $p$-Laplacian systems. Bull. Belg. Math. Soc. - Simon Stevin 19 (2012), 121-136. | DOI | MR | JFM

[28] Zhang, S.: Periodic solutions for a class of second order Hamiltonian systems with $p(t)$-Laplacian. Bound. Value Probl. 2016 (2016), Article ID 211, 20 pages. | DOI | MR | JFM

[29] Zhang, X., Tang, X.: Existence of subharmonic solutions for non-quadratic second-order Hamiltonian systems. Bound. Value Probl. 2013 (2013), Article ID 139, 25 pages. | DOI | MR | JFM

[30] Zhang, Y., Ma, S.: Some existence results on periodic and subharmonic solutions of ordinary $p$-Laplacian systems. Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 251-260. | DOI | MR | JFM

[31] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. | DOI | MR | JFM

[32] Zou, W.: Multiple solutions for second-order Hamiltonian systems via computation of the critical groups. Nonlinear Anal., Theory Methods Appl., Ser. A 44 (2001), 975-989. | DOI | MR | JFM

Cité par Sources :