Oscillation of second-order quasilinear retarded difference equations via canonical transform
Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 39-47
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the oscillatory behavior of the second-order quasi-linear retarded difference equation $$ \Delta (p(n)(\Delta y(n))^\alpha )+\eta (n) y^\beta (n- k)=0 $$ under the condition $\sum _{n=n_0}^\infty p^{-\frac{1}{\alpha }}(n)\infty $ (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.
We study the oscillatory behavior of the second-order quasi-linear retarded difference equation $$ \Delta (p(n)(\Delta y(n))^\alpha )+\eta (n) y^\beta (n- k)=0 $$ under the condition $\sum _{n=n_0}^\infty p^{-\frac{1}{\alpha }}(n)\infty $ (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.
DOI : 10.21136/MB.2023.0090-22
Classification : 39A10, 39A21
Keywords: quasi-linear; difference equation; retarded; second-order; oscillation
@article{10_21136_MB_2023_0090_22,
     author = {Chatzarakis, George E. and Rajasekar, Deepalakshmi and Sivagandhi, Saravanan and Thandapani, Ethiraju},
     title = {Oscillation of second-order quasilinear retarded difference equations via canonical transform},
     journal = {Mathematica Bohemica},
     pages = {39--47},
     year = {2024},
     volume = {149},
     number = {1},
     doi = {10.21136/MB.2023.0090-22},
     mrnumber = {4715555},
     zbl = {07830542},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0090-22/}
}
TY  - JOUR
AU  - Chatzarakis, George E.
AU  - Rajasekar, Deepalakshmi
AU  - Sivagandhi, Saravanan
AU  - Thandapani, Ethiraju
TI  - Oscillation of second-order quasilinear retarded difference equations via canonical transform
JO  - Mathematica Bohemica
PY  - 2024
SP  - 39
EP  - 47
VL  - 149
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0090-22/
DO  - 10.21136/MB.2023.0090-22
LA  - en
ID  - 10_21136_MB_2023_0090_22
ER  - 
%0 Journal Article
%A Chatzarakis, George E.
%A Rajasekar, Deepalakshmi
%A Sivagandhi, Saravanan
%A Thandapani, Ethiraju
%T Oscillation of second-order quasilinear retarded difference equations via canonical transform
%J Mathematica Bohemica
%D 2024
%P 39-47
%V 149
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0090-22/
%R 10.21136/MB.2023.0090-22
%G en
%F 10_21136_MB_2023_0090_22
Chatzarakis, George E.; Rajasekar, Deepalakshmi; Sivagandhi, Saravanan; Thandapani, Ethiraju. Oscillation of second-order quasilinear retarded difference equations via canonical transform. Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 39-47. doi: 10.21136/MB.2023.0090-22

[1] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillation Theory. Hindwai, New York (2005). | DOI | MR | JFM

[2] Bolat, Y., Alzabut, J. O.: On the oscillation of higher-order half-linear delay difference equations. Appl. Maths. Inf. Sci. 6 (2012), 423-427. | MR

[3] Chatzarakis, G. E., Grace, S. R.: Oscillation of 2nd-order nonlinear noncanonical difference equations with deviating arguments. J. Nonlinear Model. Anal. 3 (2021), 495-504. | DOI

[4] Chatzarakis, G. E., Grace, S. R., Jadlovská, I.: Oscillation theorems for certain second-order nonlinear retarded difference equations. Math. Slovaca 71 (2021), 871-880. | DOI | MR | JFM

[5] Chatzarakis, G. E., Indrajith, N., Panetsos, S. L., Thandapani, E.: Oscillations of second-order noncanonical advanced difference equations via canonical transformation. Carpathian J. Math. 38 (2022), 383-390. | DOI | MR

[6] Chatzarakis, G. E., Indrajith, N., Thandapani, E., Vidhyaa, K. S.: Oscillatory behavior of second-order non-canonical retarded difference equations. Aust. J. Math. Anal. Appl. 18 (2021), Article ID 20, 11 pages. | MR | JFM

[7] El-Morshedy, H. A.: Oscillation and nonoscillation criteria for half-linear second order difference equations. Dyn. Syst. Appl. 15 (2006), 429-450. | MR

[8] Grace, S. R., Agarwal, R. P., Bohner, M., O'Regan, D.: Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3463-3471. | DOI | MR | JFM

[9] Kanagasabapathi, R., Selvarangam, S., Graef, J. R., Thandapani, E.: Oscillation results using linearization of quasi-linear second order delay difference equations. Mediterr. J. Math. 18 (2021), Article ID 248, 14 pages. | DOI | MR | JFM

[10] Saker, S. H.: Oscillation of second order nonlinear delay difference equations. Bull. Korean Math. Soc. 40 (2003), 489-501. | DOI | MR | JFM

[11] Sakar, S. H.: Oscillation theorems for second-order nonlinear delay difference equations. Period. Math. Hung. 47 (2003), 201-213. | DOI | MR | JFM

[12] Srinivasan, R., Saravanan, S., Graef, J. R., Thandapani, E.: Oscillation of second-order half-linear retarded difference equations via canonical transform. Nonauton. Dyn. Syst. 9 (2022), 163-169. | DOI | MR | JFM

[13] Thandapani, E., Ravi, K.: Oscillation of second-order half-linear difference equations. Appl. Math. Lett. 13 (2000), 43-49. | DOI | MR | JFM

[14] Thandapani, E., Ravi, K., Graef, J. R.: Oscillation and comparison theorems for half-linear second-order difference equations. Comput. Math. Appl. 42 (2001), 953-960. | DOI | MR | JFM

[15] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations. Trans. Am. Math. Soc. 189 (1974), 319-327. | DOI | MR | JFM

[16] Zhang, B.-G., Cheng, S. S.: Oscillation criteria and comparison theorems for delay difference equations. Fasc. Math. 25 (1995), 13-32. | MR | JFM

Cité par Sources :