Keywords: quasi-linear; difference equation; retarded; second-order; oscillation
@article{10_21136_MB_2023_0090_22,
author = {Chatzarakis, George E. and Rajasekar, Deepalakshmi and Sivagandhi, Saravanan and Thandapani, Ethiraju},
title = {Oscillation of second-order quasilinear retarded difference equations via canonical transform},
journal = {Mathematica Bohemica},
pages = {39--47},
year = {2024},
volume = {149},
number = {1},
doi = {10.21136/MB.2023.0090-22},
mrnumber = {4715555},
zbl = {07830542},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0090-22/}
}
TY - JOUR AU - Chatzarakis, George E. AU - Rajasekar, Deepalakshmi AU - Sivagandhi, Saravanan AU - Thandapani, Ethiraju TI - Oscillation of second-order quasilinear retarded difference equations via canonical transform JO - Mathematica Bohemica PY - 2024 SP - 39 EP - 47 VL - 149 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0090-22/ DO - 10.21136/MB.2023.0090-22 LA - en ID - 10_21136_MB_2023_0090_22 ER -
%0 Journal Article %A Chatzarakis, George E. %A Rajasekar, Deepalakshmi %A Sivagandhi, Saravanan %A Thandapani, Ethiraju %T Oscillation of second-order quasilinear retarded difference equations via canonical transform %J Mathematica Bohemica %D 2024 %P 39-47 %V 149 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0090-22/ %R 10.21136/MB.2023.0090-22 %G en %F 10_21136_MB_2023_0090_22
Chatzarakis, George E.; Rajasekar, Deepalakshmi; Sivagandhi, Saravanan; Thandapani, Ethiraju. Oscillation of second-order quasilinear retarded difference equations via canonical transform. Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 39-47. doi: 10.21136/MB.2023.0090-22
[1] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillation Theory. Hindwai, New York (2005). | DOI | MR | JFM
[2] Bolat, Y., Alzabut, J. O.: On the oscillation of higher-order half-linear delay difference equations. Appl. Maths. Inf. Sci. 6 (2012), 423-427. | MR
[3] Chatzarakis, G. E., Grace, S. R.: Oscillation of 2nd-order nonlinear noncanonical difference equations with deviating arguments. J. Nonlinear Model. Anal. 3 (2021), 495-504. | DOI
[4] Chatzarakis, G. E., Grace, S. R., Jadlovská, I.: Oscillation theorems for certain second-order nonlinear retarded difference equations. Math. Slovaca 71 (2021), 871-880. | DOI | MR | JFM
[5] Chatzarakis, G. E., Indrajith, N., Panetsos, S. L., Thandapani, E.: Oscillations of second-order noncanonical advanced difference equations via canonical transformation. Carpathian J. Math. 38 (2022), 383-390. | DOI | MR
[6] Chatzarakis, G. E., Indrajith, N., Thandapani, E., Vidhyaa, K. S.: Oscillatory behavior of second-order non-canonical retarded difference equations. Aust. J. Math. Anal. Appl. 18 (2021), Article ID 20, 11 pages. | MR | JFM
[7] El-Morshedy, H. A.: Oscillation and nonoscillation criteria for half-linear second order difference equations. Dyn. Syst. Appl. 15 (2006), 429-450. | MR
[8] Grace, S. R., Agarwal, R. P., Bohner, M., O'Regan, D.: Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3463-3471. | DOI | MR | JFM
[9] Kanagasabapathi, R., Selvarangam, S., Graef, J. R., Thandapani, E.: Oscillation results using linearization of quasi-linear second order delay difference equations. Mediterr. J. Math. 18 (2021), Article ID 248, 14 pages. | DOI | MR | JFM
[10] Saker, S. H.: Oscillation of second order nonlinear delay difference equations. Bull. Korean Math. Soc. 40 (2003), 489-501. | DOI | MR | JFM
[11] Sakar, S. H.: Oscillation theorems for second-order nonlinear delay difference equations. Period. Math. Hung. 47 (2003), 201-213. | DOI | MR | JFM
[12] Srinivasan, R., Saravanan, S., Graef, J. R., Thandapani, E.: Oscillation of second-order half-linear retarded difference equations via canonical transform. Nonauton. Dyn. Syst. 9 (2022), 163-169. | DOI | MR | JFM
[13] Thandapani, E., Ravi, K.: Oscillation of second-order half-linear difference equations. Appl. Math. Lett. 13 (2000), 43-49. | DOI | MR | JFM
[14] Thandapani, E., Ravi, K., Graef, J. R.: Oscillation and comparison theorems for half-linear second-order difference equations. Comput. Math. Appl. 42 (2001), 953-960. | DOI | MR | JFM
[15] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations. Trans. Am. Math. Soc. 189 (1974), 319-327. | DOI | MR | JFM
[16] Zhang, B.-G., Cheng, S. S.: Oscillation criteria and comparison theorems for delay difference equations. Fasc. Math. 25 (1995), 13-32. | MR | JFM
Cité par Sources :