Oscillation of second-order quasilinear retarded difference equations via canonical transform
Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 39-47
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study the oscillatory behavior of the second-order quasi-linear retarded difference equation $$ \Delta (p(n)(\Delta y(n))^\alpha )+\eta (n) y^\beta (n- k)=0 $$ under the condition $\sum _{n=n_0}^\infty p^{-\frac{1}{\alpha }}(n)\infty $ (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.
We study the oscillatory behavior of the second-order quasi-linear retarded difference equation $$ \Delta (p(n)(\Delta y(n))^\alpha )+\eta (n) y^\beta (n- k)=0 $$ under the condition $\sum _{n=n_0}^\infty p^{-\frac{1}{\alpha }}(n)\infty $ (i.e., the noncanonical form). Unlike most existing results, the oscillatory behavior of this equation is attained by transforming it into an equation in the canonical form. Examples are provided to show the importance of our main results.
DOI :
10.21136/MB.2023.0090-22
Classification :
39A10, 39A21
Keywords: quasi-linear; difference equation; retarded; second-order; oscillation
Keywords: quasi-linear; difference equation; retarded; second-order; oscillation
@article{10_21136_MB_2023_0090_22,
author = {Chatzarakis, George E. and Rajasekar, Deepalakshmi and Sivagandhi, Saravanan and Thandapani, Ethiraju},
title = {Oscillation of second-order quasilinear retarded difference equations via canonical transform},
journal = {Mathematica Bohemica},
pages = {39--47},
year = {2024},
volume = {149},
number = {1},
doi = {10.21136/MB.2023.0090-22},
mrnumber = {4715555},
zbl = {07830542},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0090-22/}
}
TY - JOUR AU - Chatzarakis, George E. AU - Rajasekar, Deepalakshmi AU - Sivagandhi, Saravanan AU - Thandapani, Ethiraju TI - Oscillation of second-order quasilinear retarded difference equations via canonical transform JO - Mathematica Bohemica PY - 2024 SP - 39 EP - 47 VL - 149 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0090-22/ DO - 10.21136/MB.2023.0090-22 LA - en ID - 10_21136_MB_2023_0090_22 ER -
%0 Journal Article %A Chatzarakis, George E. %A Rajasekar, Deepalakshmi %A Sivagandhi, Saravanan %A Thandapani, Ethiraju %T Oscillation of second-order quasilinear retarded difference equations via canonical transform %J Mathematica Bohemica %D 2024 %P 39-47 %V 149 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0090-22/ %R 10.21136/MB.2023.0090-22 %G en %F 10_21136_MB_2023_0090_22
Chatzarakis, George E.; Rajasekar, Deepalakshmi; Sivagandhi, Saravanan; Thandapani, Ethiraju. Oscillation of second-order quasilinear retarded difference equations via canonical transform. Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 39-47. doi: 10.21136/MB.2023.0090-22
Cité par Sources :