On generalized bihyperbolic Mersenne numbers
Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 75-85
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, a new generalization of Mersenne bihyperbolic numbers is introduced. Some of the properties of presented numbers are given. A general bilinear index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained. This result implies the Catalan, Cassini, Vajda, d'Ocagne and Halton identities. Moreover, generating function and matrix generators for these numbers are presented.
In this paper, a new generalization of Mersenne bihyperbolic numbers is introduced. Some of the properties of presented numbers are given. A general bilinear index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained. This result implies the Catalan, Cassini, Vajda, d'Ocagne and Halton identities. Moreover, generating function and matrix generators for these numbers are presented.
DOI :
10.21136/MB.2023.0085-22
Classification :
11B37, 11B39
Keywords: Mersenne number; hyperbolic number; bihyperbolic number; recurrence relation
Keywords: Mersenne number; hyperbolic number; bihyperbolic number; recurrence relation
@article{10_21136_MB_2023_0085_22,
author = {Br\'od, Dorota and Szynal-Liana, Anetta},
title = {On generalized bihyperbolic {Mersenne} numbers},
journal = {Mathematica Bohemica},
pages = {75--85},
year = {2024},
volume = {149},
number = {1},
doi = {10.21136/MB.2023.0085-22},
mrnumber = {4715558},
zbl = {07830545},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0085-22/}
}
TY - JOUR AU - Bród, Dorota AU - Szynal-Liana, Anetta TI - On generalized bihyperbolic Mersenne numbers JO - Mathematica Bohemica PY - 2024 SP - 75 EP - 85 VL - 149 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0085-22/ DO - 10.21136/MB.2023.0085-22 LA - en ID - 10_21136_MB_2023_0085_22 ER -
Bród, Dorota; Szynal-Liana, Anetta. On generalized bihyperbolic Mersenne numbers. Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 75-85. doi: 10.21136/MB.2023.0085-22
Cité par Sources :