The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$
Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 49-55.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p$ and $q$ be two different prime integers such that $p\equiv q\equiv 3\pmod 8$ with $(p/q)=1$, and $l$ a positive odd square-free integer relatively prime to $p$ and $q$. In this paper we investigate the unit groups of number fields $\mathbb L=\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$.
DOI : 10.21136/MB.2023.0077-22
Classification : 11R04, 11R27, 11R29
Keywords: unit group; multiquadratic number fields; unit index
@article{10_21136_MB_2023_0077_22,
     author = {El Hamam, Moha Ben Taleb},
     title = {The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$},
     journal = {Mathematica Bohemica},
     pages = {49--55},
     publisher = {mathdoc},
     volume = {149},
     number = {1},
     year = {2024},
     doi = {10.21136/MB.2023.0077-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0077-22/}
}
TY  - JOUR
AU  - El Hamam, Moha Ben Taleb
TI  - The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$
JO  - Mathematica Bohemica
PY  - 2024
SP  - 49
EP  - 55
VL  - 149
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0077-22/
DO  - 10.21136/MB.2023.0077-22
LA  - en
ID  - 10_21136_MB_2023_0077_22
ER  - 
%0 Journal Article
%A El Hamam, Moha Ben Taleb
%T The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$
%J Mathematica Bohemica
%D 2024
%P 49-55
%V 149
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0077-22/
%R 10.21136/MB.2023.0077-22
%G en
%F 10_21136_MB_2023_0077_22
El Hamam, Moha Ben Taleb. The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$. Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 49-55. doi : 10.21136/MB.2023.0077-22. http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0077-22/

Cité par Sources :