The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$
Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 49-55
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $p$ and $q$ be two different prime integers such that $p\equiv q\equiv 3\pmod 8$ with $(p/q)=1$, and $l$ a positive odd square-free integer relatively prime to $p$ and $q$. In this paper we investigate the unit groups of number fields $\mathbb L=\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$.
Let $p$ and $q$ be two different prime integers such that $p\equiv q\equiv 3\pmod 8$ with $(p/q)=1$, and $l$ a positive odd square-free integer relatively prime to $p$ and $q$. In this paper we investigate the unit groups of number fields $\mathbb L=\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$.
DOI : 10.21136/MB.2023.0077-22
Classification : 11R04, 11R27, 11R29
Keywords: unit group; multiquadratic number fields; unit index
@article{10_21136_MB_2023_0077_22,
     author = {El Hamam, Moha Ben Taleb},
     title = {The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$},
     journal = {Mathematica Bohemica},
     pages = {49--55},
     year = {2024},
     volume = {149},
     number = {1},
     doi = {10.21136/MB.2023.0077-22},
     mrnumber = {4715556},
     zbl = {07830543},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0077-22/}
}
TY  - JOUR
AU  - El Hamam, Moha Ben Taleb
TI  - The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$
JO  - Mathematica Bohemica
PY  - 2024
SP  - 49
EP  - 55
VL  - 149
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0077-22/
DO  - 10.21136/MB.2023.0077-22
LA  - en
ID  - 10_21136_MB_2023_0077_22
ER  - 
%0 Journal Article
%A El Hamam, Moha Ben Taleb
%T The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$
%J Mathematica Bohemica
%D 2024
%P 49-55
%V 149
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0077-22/
%R 10.21136/MB.2023.0077-22
%G en
%F 10_21136_MB_2023_0077_22
El Hamam, Moha Ben Taleb. The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$. Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 49-55. doi: 10.21136/MB.2023.0077-22

[1] Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur $\Bbb Q$. Ann. Sci. Math. Qué. 23 (1999), 15-21 French \99999MR99999 1721726 . | MR | JFM

[2] Azizi, A., Chems-Eddin, M. M., Zekhnini, A.: Note on the Hilbert 2-class field tower. Math. Bohem. 147 (2022), 513-524 \99999DOI99999 10.21136/MB.2022.0056-21 . | MR

[3] Chems-Eddin, M. M.: Arithmetic of some real triquadratic fields: Units and 2-class groups. Available at , 32 pages. | arXiv

[4] Chems-Eddin, M. M.: Unit groups of some multiquadratic number fields and 2-class groups. Period. Math. Hung. 84 (2022), 235-249. | DOI | MR | JFM

[5] Chems-Eddin, M. M.: On units of some fields of the form $\Bbb{Q}(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-\ell})$. Math. Bohem. 148 (2023), 237-242. | DOI | MR | JFM

[6] Chems-Eddin, M. M., Azizi, A., Zekhnini, A.: Unit groups and Iwasawa lambda invariants of some multiquadratic number fields. Bol. Soc. Mat. Mex, III. Ser. 27 (2021), Article ID 24, 16 pages. | DOI | MR | JFM

[7] Chems-Eddin, M. M., Zekhnini, A., Azizi, A.: Units and 2-class field towers of some multiquadratic number fields. Turk. J. Math. 44 (2020), 1466-1483. | DOI | MR | JFM

[8] Chems-Eddin, M. M., Zekhnini, A., Azizi, A.: On the Hilbert 2-class field towers of some cyclotomic $\Bbb Z_2$-extensions. Available at , 15 pages. | arXiv | MR

[9] Chems-Eddin, M. M., Zekhnini, A., Azizi, A.: Unit groups of some multiquadratic number fields of degree 16. São Paulo J. Math. Sci 16 (2022), 1091-1096. | DOI | MR | JFM

[10] Kubota, T.: Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J. 10 (1956), 65-85 German. | DOI | MR | JFM

[11] Wada, H.: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209. | MR | JFM

Cité par Sources :