On mean value properties involving a logarithm-type weight
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 419-425
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Two new assertions characterizing analytically disks in the Euclidean plane $\mathbb {R}^2$ are proved. Weighted mean value property of positive solutions to the Helmholtz and modified Helmholtz equations are used for this purpose; the weight has a logarithmic singularity. The obtained results are compared with those without weight that were found earlier.
Two new assertions characterizing analytically disks in the Euclidean plane $\mathbb {R}^2$ are proved. Weighted mean value property of positive solutions to the Helmholtz and modified Helmholtz equations are used for this purpose; the weight has a logarithmic singularity. The obtained results are compared with those without weight that were found earlier.
DOI : 10.21136/MB.2023.0072-23
Classification : 31A10, 35B05, 35J05
Keywords: harmonic function; Helmholtz equation; modified Helmholtz equation; mean value property; logarithmic weight; characterization of balls
@article{10_21136_MB_2023_0072_23,
     author = {Kuznetsov, Nikolay},
     title = {On mean value properties involving a logarithm-type weight},
     journal = {Mathematica Bohemica},
     pages = {419--425},
     year = {2024},
     volume = {149},
     number = {3},
     doi = {10.21136/MB.2023.0072-23},
     mrnumber = {4801110},
     zbl = {07953711},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0072-23/}
}
TY  - JOUR
AU  - Kuznetsov, Nikolay
TI  - On mean value properties involving a logarithm-type weight
JO  - Mathematica Bohemica
PY  - 2024
SP  - 419
EP  - 425
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0072-23/
DO  - 10.21136/MB.2023.0072-23
LA  - en
ID  - 10_21136_MB_2023_0072_23
ER  - 
%0 Journal Article
%A Kuznetsov, Nikolay
%T On mean value properties involving a logarithm-type weight
%J Mathematica Bohemica
%D 2024
%P 419-425
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0072-23/
%R 10.21136/MB.2023.0072-23
%G en
%F 10_21136_MB_2023_0072_23
Kuznetsov, Nikolay. On mean value properties involving a logarithm-type weight. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 419-425. doi: 10.21136/MB.2023.0072-23

[1] Duffin, R. J.: Yukawan potential theory. J. Math. Anal. Appl. 35 (1971), 105-130. | DOI | MR | JFM

[2] Evgrafov, M. A.: Asymptotic Estimates and Entire Functions. Nauka, Moscow (1979), Russian. | MR | JFM

[3] Hansen, W., Netuka, I.: Inverse mean value property of harmonic functions. Math. Ann. 297 (1993), 147-156. | DOI | MR | JFM

[4] Hansen, W., Netuka, I.: Corrigendum: "Inverse mean value property of harmonic functions". Math. Ann. 303 (1995), 373-375. | DOI | MR | JFM

[5] Kuran, Ü.: On the mean-value property of harmonic functions. Bull. Lond. Math. Soc. 4 (1972), 311-312. | DOI | MR | JFM

[6] Kuznetsov, N.: Characterization of balls via solutions of the modified Helmholtz equation. C. R., Math., Acad. Sci. Paris 359 (2021), 945-948. | DOI | MR | JFM

[7] Kuznetsov, N.: Mean value properties of solutions to the Helmholtz and modified Helmholtz equations. J. Math. Sci., New York 257 (2021), 673-683. | DOI | MR | JFM

[8] Kuznetsov, N.: Inverse mean value property of metaharmonic functions. J. Math. Sci., New York 264 (2022), 603-608. | DOI | MR | JFM

[9] Kuznetsov, N.: Metaharmonic functions: Mean flux theorem, its converse and related properties. St. Petersbg Math. J. 33 (2022), 243-254. | DOI | MR | JFM

[10] Kuznetsov, N.: Panharmonic functions: Mean value properties and related topics. J. Math. Sci., New York 269 (2023), 53-76. | DOI | MR | JFM

[11] Kuznetsov, N.: Weighted means and characterization of balls. J. Math. Sci., New York 269 (2023), 853-858. | DOI | MR | JFM

[12] Netuka, I.: Harmonic functions and mean value theorems. Čas. Pěst. Mat. 100 (1975), 391-409 Czech. | DOI | MR | JFM

[13] Netuka, I., Veselý, J.: Mean value property and harmonic functions. Classical and Modern Potential Theory and Applications NATO ASI Series, Ser. C: Mathematical and Physical Sciences 430. Kluwer Academic, Dordrecht (1994), 359-398. | MR | JFM

[14] Nikiforov, A. F., Uvarov, V. B.: Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhäuser, Basel (1988). | DOI | MR | JFM

Cité par Sources :