Keywords: harmonic function; Helmholtz equation; modified Helmholtz equation; mean value property; logarithmic weight; characterization of balls
@article{10_21136_MB_2023_0072_23,
author = {Kuznetsov, Nikolay},
title = {On mean value properties involving a logarithm-type weight},
journal = {Mathematica Bohemica},
pages = {419--425},
year = {2024},
volume = {149},
number = {3},
doi = {10.21136/MB.2023.0072-23},
mrnumber = {4801110},
zbl = {07953711},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0072-23/}
}
TY - JOUR AU - Kuznetsov, Nikolay TI - On mean value properties involving a logarithm-type weight JO - Mathematica Bohemica PY - 2024 SP - 419 EP - 425 VL - 149 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0072-23/ DO - 10.21136/MB.2023.0072-23 LA - en ID - 10_21136_MB_2023_0072_23 ER -
Kuznetsov, Nikolay. On mean value properties involving a logarithm-type weight. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 419-425. doi: 10.21136/MB.2023.0072-23
[1] Duffin, R. J.: Yukawan potential theory. J. Math. Anal. Appl. 35 (1971), 105-130. | DOI | MR | JFM
[2] Evgrafov, M. A.: Asymptotic Estimates and Entire Functions. Nauka, Moscow (1979), Russian. | MR | JFM
[3] Hansen, W., Netuka, I.: Inverse mean value property of harmonic functions. Math. Ann. 297 (1993), 147-156. | DOI | MR | JFM
[4] Hansen, W., Netuka, I.: Corrigendum: "Inverse mean value property of harmonic functions". Math. Ann. 303 (1995), 373-375. | DOI | MR | JFM
[5] Kuran, Ü.: On the mean-value property of harmonic functions. Bull. Lond. Math. Soc. 4 (1972), 311-312. | DOI | MR | JFM
[6] Kuznetsov, N.: Characterization of balls via solutions of the modified Helmholtz equation. C. R., Math., Acad. Sci. Paris 359 (2021), 945-948. | DOI | MR | JFM
[7] Kuznetsov, N.: Mean value properties of solutions to the Helmholtz and modified Helmholtz equations. J. Math. Sci., New York 257 (2021), 673-683. | DOI | MR | JFM
[8] Kuznetsov, N.: Inverse mean value property of metaharmonic functions. J. Math. Sci., New York 264 (2022), 603-608. | DOI | MR | JFM
[9] Kuznetsov, N.: Metaharmonic functions: Mean flux theorem, its converse and related properties. St. Petersbg Math. J. 33 (2022), 243-254. | DOI | MR | JFM
[10] Kuznetsov, N.: Panharmonic functions: Mean value properties and related topics. J. Math. Sci., New York 269 (2023), 53-76. | DOI | MR | JFM
[11] Kuznetsov, N.: Weighted means and characterization of balls. J. Math. Sci., New York 269 (2023), 853-858. | DOI | MR | JFM
[12] Netuka, I.: Harmonic functions and mean value theorems. Čas. Pěst. Mat. 100 (1975), 391-409 Czech. | DOI | MR | JFM
[13] Netuka, I., Veselý, J.: Mean value property and harmonic functions. Classical and Modern Potential Theory and Applications NATO ASI Series, Ser. C: Mathematical and Physical Sciences 430. Kluwer Academic, Dordrecht (1994), 359-398. | MR | JFM
[14] Nikiforov, A. F., Uvarov, V. B.: Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhäuser, Basel (1988). | DOI | MR | JFM
Cité par Sources :