On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 167-183
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $K = \mathbb {Q} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot 3^k\cdot 7^s} -m \in \mathbb{Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.
Let $K = \mathbb {Q} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot 3^k\cdot 7^s} -m \in \mathbb{Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.
DOI : 10.21136/MB.2023.0071-22
Classification : 11R04, 11R16, 11R21
Keywords: power integral basis; theorem of Ore; prime ideal factorization; common index divisor
@article{10_21136_MB_2023_0071_22,
     author = {Ben Yakkou, Hamid and Didi, Jalal},
     title = {On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$},
     journal = {Mathematica Bohemica},
     pages = {167--183},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0071-22},
     mrnumber = {4767006},
     zbl = {07893417},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/}
}
TY  - JOUR
AU  - Ben Yakkou, Hamid
AU  - Didi, Jalal
TI  - On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$
JO  - Mathematica Bohemica
PY  - 2024
SP  - 167
EP  - 183
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/
DO  - 10.21136/MB.2023.0071-22
LA  - en
ID  - 10_21136_MB_2023_0071_22
ER  - 
%0 Journal Article
%A Ben Yakkou, Hamid
%A Didi, Jalal
%T On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$
%J Mathematica Bohemica
%D 2024
%P 167-183
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/
%R 10.21136/MB.2023.0071-22
%G en
%F 10_21136_MB_2023_0071_22
Ben Yakkou, Hamid; Didi, Jalal. On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 167-183. doi: 10.21136/MB.2023.0071-22

[1] Ahmad, S., Nakahara, T., Hameed, A.: On certain pure sextic fields related to a problem of Hasse. Int. J. Algebra Comput. 26 (2016), 577-583. | DOI | MR | JFM

[2] Ahmad, S., Nakahara, T., Husnine, S. M.: Power integral bases for certain pure sextic fields. Int. J. Number Theory 10 (2014), 2257-2265. | DOI | MR | JFM

[3] Yakkou, H. Ben, Chillali, A., Fadil, L. El: On power integral bases for certain pure number fields defined by $x^{2^r \cdot 5^s}-m$. Commun. Algebra 49 (2021), 2916-2926. | DOI | MR | JFM

[4] Bilu, Y., Gaál, I., Győry, K.: Index form equations in sextic fields: A hard computation. Acta Arith. 115 (2004), 85-96. | DOI | MR | JFM

[5] Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin (1993). | DOI | MR | JFM

[6] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen. Abh. Akad. Wiss. Gött. 23 (1878), 3-38 German.

[7] Fadil, L. El: On power integral bases for certain pure number fields defined by $x^{3^r\cdot 7^s}-m$. Colloq. Math. 169 (2022), 307-317. | DOI | MR | JFM

[8] Fadil, L. El, Yakkou, H. Ben, Didi, J.: On power integral bases for certain pure number fields defined by $x^{42}- m$. Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 81, 10 pages. | DOI | MR | JFM

[9] Fadil, L. El, Montes, J., Nart, E.: Newton polygons and $p$-integral bases of quartic number fields. J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. | DOI | MR | JFM

[10] Fadil, L. El, Najim, A.: On power integral bases for certain pure number fields defined by $x^{2^u \cdot 3^v}-m$. Available at , 12 pages. | arXiv | MR

[11] Gaál, I.: Diophantine Equations and Power Integral Bases: Theory and Algorithms. Birkhäuser, Cham (2019). | DOI | MR | JFM

[12] Gaál, I., Győry, K.: Index form equations in quintic fields. Acta Arith. 89 (1999), 379-396. | DOI | MR | JFM

[13] Gaál, I., Remete, L.: Binomial Thue equations and power integral bases in pure quartic fields. JP J. Algebra Number Theory Appl. 32 (2014), 49-61. | JFM

[14] Gaál, I., Remete, L.: Integral bases and monogenity of pure fields. J. Number Theory 173 (2017), 129-146. | DOI | MR | JFM

[15] Gaál, I., Remete, L.: Non-monogenity in a family of octic fields. Rocky Mt. J. Math. 47 (2017), 817-824. | DOI | MR | JFM

[16] Gassert, T. A.: A note on the monogeneity of power maps. Albanian J. Math. 11 (2017), 3-12. | DOI | MR | JFM

[17] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory. Trans. Am. Math. Soc. 364 (2012), 361-416. | DOI | MR | JFM

[18] Hameed, A., Nakahara, T.: Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 58 (2015), 419-433. | MR | JFM

[19] Hasse, H.: Zahlentheorie. Akademie-Verlag, Berlin (1963), German. | MR | JFM

[20] Jakhar, A., Khanduja, S., Sangwan, N.: On the discriminant of pure number fields. Colloq. Math. 167 (2022), 149-157. | DOI | MR | JFM

[21] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer Monographs in Mathematics. Springer, Berlin (2004). | DOI | MR | JFM

[22] Ore, "O.: Newtonsche Polygone in der Theorie der algebraischen Körper. Math. Ann. 99 (1928), 84-117 German \99999JFM99999 54.0191.02. | DOI | MR

[23] Pethő, A., Pohst, M. E.: On the indices of multiquadratic number fields. Acta. Arith. 153 (2012), 393-414. | DOI | MR | JFM

Cité par Sources :