On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 167-183
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $K = \mathbb {Q} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot 3^k\cdot 7^s} -m \in \mathbb{Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.
Let $K = \mathbb {Q} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot 3^k\cdot 7^s} -m \in \mathbb{Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.
DOI :
10.21136/MB.2023.0071-22
Classification :
11R04, 11R16, 11R21
Keywords: power integral basis; theorem of Ore; prime ideal factorization; common index divisor
Keywords: power integral basis; theorem of Ore; prime ideal factorization; common index divisor
@article{10_21136_MB_2023_0071_22,
author = {Ben Yakkou, Hamid and Didi, Jalal},
title = {On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$},
journal = {Mathematica Bohemica},
pages = {167--183},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0071-22},
mrnumber = {4767006},
zbl = {07893417},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/}
}
TY - JOUR AU - Ben Yakkou, Hamid AU - Didi, Jalal TI - On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$ JO - Mathematica Bohemica PY - 2024 SP - 167 EP - 183 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/ DO - 10.21136/MB.2023.0071-22 LA - en ID - 10_21136_MB_2023_0071_22 ER -
%0 Journal Article %A Ben Yakkou, Hamid %A Didi, Jalal %T On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$ %J Mathematica Bohemica %D 2024 %P 167-183 %V 149 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/ %R 10.21136/MB.2023.0071-22 %G en %F 10_21136_MB_2023_0071_22
Ben Yakkou, Hamid; Didi, Jalal. On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 167-183. doi: 10.21136/MB.2023.0071-22
Cité par Sources :