Keywords: power integral basis; theorem of Ore; prime ideal factorization; common index divisor
@article{10_21136_MB_2023_0071_22,
author = {Ben Yakkou, Hamid and Didi, Jalal},
title = {On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$},
journal = {Mathematica Bohemica},
pages = {167--183},
year = {2024},
volume = {149},
number = {2},
doi = {10.21136/MB.2023.0071-22},
mrnumber = {4767006},
zbl = {07893417},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/}
}
TY - JOUR AU - Ben Yakkou, Hamid AU - Didi, Jalal TI - On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$ JO - Mathematica Bohemica PY - 2024 SP - 167 EP - 183 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/ DO - 10.21136/MB.2023.0071-22 LA - en ID - 10_21136_MB_2023_0071_22 ER -
%0 Journal Article %A Ben Yakkou, Hamid %A Didi, Jalal %T On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$ %J Mathematica Bohemica %D 2024 %P 167-183 %V 149 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/ %R 10.21136/MB.2023.0071-22 %G en %F 10_21136_MB_2023_0071_22
Ben Yakkou, Hamid; Didi, Jalal. On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 167-183. doi: 10.21136/MB.2023.0071-22
[1] Ahmad, S., Nakahara, T., Hameed, A.: On certain pure sextic fields related to a problem of Hasse. Int. J. Algebra Comput. 26 (2016), 577-583. | DOI | MR | JFM
[2] Ahmad, S., Nakahara, T., Husnine, S. M.: Power integral bases for certain pure sextic fields. Int. J. Number Theory 10 (2014), 2257-2265. | DOI | MR | JFM
[3] Yakkou, H. Ben, Chillali, A., Fadil, L. El: On power integral bases for certain pure number fields defined by $x^{2^r \cdot 5^s}-m$. Commun. Algebra 49 (2021), 2916-2926. | DOI | MR | JFM
[4] Bilu, Y., Gaál, I., Győry, K.: Index form equations in sextic fields: A hard computation. Acta Arith. 115 (2004), 85-96. | DOI | MR | JFM
[5] Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin (1993). | DOI | MR | JFM
[6] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen. Abh. Akad. Wiss. Gött. 23 (1878), 3-38 German.
[7] Fadil, L. El: On power integral bases for certain pure number fields defined by $x^{3^r\cdot 7^s}-m$. Colloq. Math. 169 (2022), 307-317. | DOI | MR | JFM
[8] Fadil, L. El, Yakkou, H. Ben, Didi, J.: On power integral bases for certain pure number fields defined by $x^{42}- m$. Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 81, 10 pages. | DOI | MR | JFM
[9] Fadil, L. El, Montes, J., Nart, E.: Newton polygons and $p$-integral bases of quartic number fields. J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. | DOI | MR | JFM
[10] Fadil, L. El, Najim, A.: On power integral bases for certain pure number fields defined by $x^{2^u \cdot 3^v}-m$. Available at , 12 pages. | arXiv | MR
[11] Gaál, I.: Diophantine Equations and Power Integral Bases: Theory and Algorithms. Birkhäuser, Cham (2019). | DOI | MR | JFM
[12] Gaál, I., Győry, K.: Index form equations in quintic fields. Acta Arith. 89 (1999), 379-396. | DOI | MR | JFM
[13] Gaál, I., Remete, L.: Binomial Thue equations and power integral bases in pure quartic fields. JP J. Algebra Number Theory Appl. 32 (2014), 49-61. | JFM
[14] Gaál, I., Remete, L.: Integral bases and monogenity of pure fields. J. Number Theory 173 (2017), 129-146. | DOI | MR | JFM
[15] Gaál, I., Remete, L.: Non-monogenity in a family of octic fields. Rocky Mt. J. Math. 47 (2017), 817-824. | DOI | MR | JFM
[16] Gassert, T. A.: A note on the monogeneity of power maps. Albanian J. Math. 11 (2017), 3-12. | DOI | MR | JFM
[17] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory. Trans. Am. Math. Soc. 364 (2012), 361-416. | DOI | MR | JFM
[18] Hameed, A., Nakahara, T.: Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 58 (2015), 419-433. | MR | JFM
[19] Hasse, H.: Zahlentheorie. Akademie-Verlag, Berlin (1963), German. | MR | JFM
[20] Jakhar, A., Khanduja, S., Sangwan, N.: On the discriminant of pure number fields. Colloq. Math. 167 (2022), 149-157. | DOI | MR | JFM
[21] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer Monographs in Mathematics. Springer, Berlin (2004). | DOI | MR | JFM
[22] Ore, "O.: Newtonsche Polygone in der Theorie der algebraischen Körper. Math. Ann. 99 (1928), 84-117 German \99999JFM99999 54.0191.02. | DOI | MR
[23] Pethő, A., Pohst, M. E.: On the indices of multiquadratic number fields. Acta. Arith. 153 (2012), 393-414. | DOI | MR | JFM
Cité par Sources :