On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$
Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 167-183 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $K = \mathbb {Q} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot 3^k\cdot 7^s} -m \in \mathbb{Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.
Let $K = \mathbb {Q} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot 3^k\cdot 7^s} -m \in \mathbb{Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.
DOI : 10.21136/MB.2023.0071-22
Classification : 11R04, 11R16, 11R21
Keywords: power integral basis; theorem of Ore; prime ideal factorization; common index divisor
@article{10_21136_MB_2023_0071_22,
     author = {Ben Yakkou, Hamid and Didi, Jalal},
     title = {On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$},
     journal = {Mathematica Bohemica},
     pages = {167--183},
     year = {2024},
     volume = {149},
     number = {2},
     doi = {10.21136/MB.2023.0071-22},
     mrnumber = {4767006},
     zbl = {07893417},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/}
}
TY  - JOUR
AU  - Ben Yakkou, Hamid
AU  - Didi, Jalal
TI  - On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$
JO  - Mathematica Bohemica
PY  - 2024
SP  - 167
EP  - 183
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/
DO  - 10.21136/MB.2023.0071-22
LA  - en
ID  - 10_21136_MB_2023_0071_22
ER  - 
%0 Journal Article
%A Ben Yakkou, Hamid
%A Didi, Jalal
%T On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$
%J Mathematica Bohemica
%D 2024
%P 167-183
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0071-22/
%R 10.21136/MB.2023.0071-22
%G en
%F 10_21136_MB_2023_0071_22
Ben Yakkou, Hamid; Didi, Jalal. On monogenity of certain pure number fields of degrees $2^r\cdot 3^k\cdot 7^s$. Mathematica Bohemica, Tome 149 (2024) no. 2, pp. 167-183. doi: 10.21136/MB.2023.0071-22

Cité par Sources :