Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series
Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 455-470
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Few subclasses of Sakaguchi type functions are introduced in this article, based on the notion of Mittag-Leffler type Poisson distribution series. The class $ \mathfrak {p}\text {-}\nobreak \Phi \mathcal {S}^*(t,\mu ,\nu ,J,K) $ is defined, and the necessary and sufficient condition, convex combination, growth distortion bounds, and partial sums are discussed.
Few subclasses of Sakaguchi type functions are introduced in this article, based on the notion of Mittag-Leffler type Poisson distribution series. The class $ \mathfrak {p}\text {-}\nobreak \Phi \mathcal {S}^*(t,\mu ,\nu ,J,K) $ is defined, and the necessary and sufficient condition, convex combination, growth distortion bounds, and partial sums are discussed.
DOI : 10.21136/MB.2023.0061-23
Classification : 30C45, 30C50
Keywords: Mittag-Leffler type Poisson distribution; analytic function; conic-type region; geometric properties
@article{10_21136_MB_2023_0061_23,
     author = {Nithiyanandham, Elumalai Krishnan and Keerthi, Bhaskara Srutha},
     title = {Properties on subclass of {Sakaguchi} type functions using a {Mittag-Leffler} type {Poisson} distribution series},
     journal = {Mathematica Bohemica},
     pages = {455--470},
     year = {2024},
     volume = {149},
     number = {4},
     doi = {10.21136/MB.2023.0061-23},
     mrnumber = {4840079},
     zbl = {07980800},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0061-23/}
}
TY  - JOUR
AU  - Nithiyanandham, Elumalai Krishnan
AU  - Keerthi, Bhaskara Srutha
TI  - Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series
JO  - Mathematica Bohemica
PY  - 2024
SP  - 455
EP  - 470
VL  - 149
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0061-23/
DO  - 10.21136/MB.2023.0061-23
LA  - en
ID  - 10_21136_MB_2023_0061_23
ER  - 
%0 Journal Article
%A Nithiyanandham, Elumalai Krishnan
%A Keerthi, Bhaskara Srutha
%T Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series
%J Mathematica Bohemica
%D 2024
%P 455-470
%V 149
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0061-23/
%R 10.21136/MB.2023.0061-23
%G en
%F 10_21136_MB_2023_0061_23
Nithiyanandham, Elumalai Krishnan; Keerthi, Bhaskara Srutha. Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series. Mathematica Bohemica, Tome 149 (2024) no. 4, pp. 455-470. doi: 10.21136/MB.2023.0061-23

[1] Agarwal, R. P.: A propos d'une note de M. Pierre Humbert. C. R. Acad. Sci., Paris 236 (1953), 2031-2032 French. | MR | JFM

[2] Alessa, N., Venkateswarlu, B., Reddy, P. T., Loganathan, K., Tamilvanan, K.: A new subclass of analytic functions related to Mittag-Leffler type Poisson distribution series. J. Funct. Spaces 2021 (2021), Article ID 6618163, 7 pages. | DOI | MR | JFM

[3] Kanas, S., Răducanu, D.: Some class of analytic functions related to conic domains. Math. Slovaca 64 (2014), 1183-1196. | DOI | MR | JFM

[4] Kanas, S., Srivastava, H. M.: Linear operators associated with $k$-uniformly convex functions. Integral Transforms Spec. Funct. 9 (2000), 121-132. | DOI | MR | JFM

[5] Kanas, S., Wiśniowska, A.: Conic regions and $k$-uniform convexity. J. Comput. Appl. Math. 105 (1999), 327-336. | DOI | MR | JFM

[6] Kanas, S., Wiśniowska, A.: Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 45 (2000), 647-657. | MR | JFM

[7] Khan, M. G., Ahmad, B., Khan, N., Mashwani, W. K., Arjika, S., Khan, B., Chinram, R.: Applications of Mittag-Leffler type Poisson distribution to a subclass of analytic functions involving conic-type regions. J. Funct. Spaces 2021 (2021), Article ID 4343163, 9 pages. | DOI | MR | JFM

[8] Mahmood, T., Naeem, M., Hussain, S., Khan, S., Altinkaya, Ş.: A subclass of analytic functions defined by using Mittag-Leffler function. Honam Math. J. 42 (2020), 577-590. | DOI | MR | JFM

[9] Mittag-Leffler, G. M.: Une généralisation de l'intégrale de Laplace-Abel. C. R. Acad. Sci., Paris 136 (1903), 537-539 French \99999JFM99999 34.0434.02.

[10] Mittag-Leffler, G. M.: Sur la nouvelle fonction $E_{\alpha}(x)$. C. R. Acad. Sci., Paris 137 (1904), 554-558 French \99999JFM99999 34.0435.01.

[11] Mittag-Leffler, G.: Sur la représentation analytique d'une branche uniforme d'une fonction monogène. Acta Math. 29 (1905), 101-181 French \99999JFM99999 36.0469.02. | DOI | MR

[12] Noor, K. I., Malik, S. N.: On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 62 (2011), 2209-2217. | DOI | MR | JFM

[13] Porwal, S., Dixit, K. K.: On Mittag-Leffler type Poisson distribution. Afr. Mat. 28 (2017), 29-34. | DOI | MR | JFM

[14] Wiman, A.: Über den Fundamentalsatz in der Theorie der Funktionen $E_\alpha(x)$. Acta Math. 29 (1905), 191-201 German \99999JFM99999 36.0471.01. | DOI | MR

[15] Wiman, A.: Über die Nullstellen der Funktionen $E_\alpha(x)$. Acta Math. 29 (1905), 217-234 German \99999JFM99999 36.0472.01. | DOI | MR

Cité par Sources :