Keywords: nonstandard growth; $C^{1, \alpha }$ regularity; Hölder continuity; bounded weak solution; partial differential equations
@article{10_21136_MB_2023_0055_23,
author = {Kim, Sungchol and Ri, Dukman},
title = {$C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions},
journal = {Mathematica Bohemica},
pages = {365--396},
year = {2024},
volume = {149},
number = {3},
doi = {10.21136/MB.2023.0055-23},
mrnumber = {4801107},
zbl = {07953708},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0055-23/}
}
TY - JOUR
AU - Kim, Sungchol
AU - Ri, Dukman
TI - $C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions
JO - Mathematica Bohemica
PY - 2024
SP - 365
EP - 396
VL - 149
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0055-23/
DO - 10.21136/MB.2023.0055-23
LA - en
ID - 10_21136_MB_2023_0055_23
ER -
%0 Journal Article
%A Kim, Sungchol
%A Ri, Dukman
%T $C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions
%J Mathematica Bohemica
%D 2024
%P 365-396
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0055-23/
%R 10.21136/MB.2023.0055-23
%G en
%F 10_21136_MB_2023_0055_23
Kim, Sungchol; Ri, Dukman. $C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 365-396. doi: 10.21136/MB.2023.0055-23
[1] Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156 (2001), 121-140. | DOI | MR | JFM
[2] Adamowicz, T., Toivanen, O.: Hölder continuity of quasiminimizers with nonstandard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 125 (2015), 433-456. | DOI | MR | JFM
[3] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces. Pure and Mathematics 140. Elsevier, Amsterdam (2003). | MR | JFM
[4] Antontsev, S., Shmarev, S.: Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up. Atlantis Studies in Differential Equations 4. Atlantis Press, Amsterdam (2015). | MR | JFM
[5] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersbg. Math. J. 27 (2016), 347-379. | DOI | MR | JFM
[6] Beck, L.: Elliptic Regularity Theory: A First Course. Lecture Notes of the Unione Matematica Italiana 19. Springer, Cham (2016). | DOI | MR | JFM
[7] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383-1406. | DOI | MR | JFM
[8] Piat, V. Chiadò, Coscia, A.: Hölder continuity of minimizers of functionals with variable growth exponent. Manuscr. Math. 93 (1997), 283-299. | DOI | MR | JFM
[9] Colombo, M., Mingione, G.: Bounded minimizers of double phase variational integrals. Arch. Ration. Mech. Anal. 218 (2015), 219-273. | DOI | MR | JFM
[10] Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015), 443-496. | DOI | MR | JFM
[11] Coscia, A., Mingione, G.: Hölder continuity of the gradient of $p(x)$-harmonic mappings. C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 363-368. | DOI | MR | JFM
[12] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Heidelberg (2013). | DOI | MR | JFM
[13] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM
[14] Diening, L., Schwarzacher, S.: Global gradient estimates for the $p(\cdot)$-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A 106 (2014), 70-85. | DOI | MR | JFM
[15] Eleuteri, M.: Hölder continuity results for a class of functionals with non-standard growth. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 7 (2004), 129-157. | MR | JFM
[16] Fan, X.: Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form. J. Differ. Equations 235 (2007), 397-417. | DOI | MR | JFM
[17] Fan, X., Zhao, D.: A class of De Giorgi type and Hölder continuity. Nonlinear Anal., Theory Methods Appl. 36 (1999), 295-318. | DOI | MR | JFM
[18] Fan, X., Zhao, D.: The quasi-minimizer of integral functionals with $m(x)$ growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 39 (2000), 807-816. | DOI | MR | JFM
[19] Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equations 18 (1993), 153-167. | DOI | MR | JFM
[20] Giannetti, F., Napoli, A. Passarelli di: Regularity results for a new class of functionals with non-standard growth conditions. J. Differ. Equations 254 (2013), 1280-1305. | DOI | MR | JFM
[21] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). | DOI | MR | JFM
[22] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003). | DOI | MR | JFM
[23] Gordadze, E., Meskhi, A., Ragusa, M. A.: On some extrapolation in generalized grand Morrey spaces and applications to partial differential equations. Trans. A. Razmadze Math. Inst. 176 (2022), 435-441. | MR | JFM
[24] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. | DOI | MR | JFM
[25] Harjulehto, P., Kuusi, T., Lukkari, T., Marola, N., Parviainen, M.: Harnack's inequality for quasiminimizers with nonstandard growth conditions. J. Math. Anal. Appl. 344 (2008), 504-520. | DOI | MR | JFM
[26] Kim, S., Ri, D.: Global boundedness and Hölder continuity of quasiminimizers with the general nonstandard growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 170-192. | DOI | MR | JFM
[27] Lieberman, G. M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal., Theory Methods Appl. 12 (1988), 1203-1219. | DOI | MR | JFM
[28] Lieberman, G. M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Commun. Partial Differ. Equations 16 (1991), 311-361. | DOI | MR | JFM
[29] Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), 267-284. | DOI | MR | JFM
[30] Mingione, G.: Regularity of minima: An invitation to the dark side of the calculus of variations. Appl. Math., Praha 51 (2006), 355-426. | DOI | MR | JFM
[31] Rădulescu, V. D., Repovš, D. D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). | DOI | MR | JFM
[32] Rajagopal, K. R., Růžička, M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13 (2001), 59-78. | DOI | JFM
[33] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM
[34] Toivanen, O.: Local boundedness of general minimizers with nonstandard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 81 (2013), 62-69. | DOI | MR | JFM
[35] Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equations 51 (1984), 126-150. | DOI | MR | JFM
[36] Yao, F.: Local Hölder regularity of the gradients for the elliptic $p(x)$-Laplacian equation. Nonlinear Anal., Theory Methods Appl., Ser. A 78 (2013), 79-85. | DOI | MR | JFM
[37] Yu, C., Ri, D.: Global $L^\infty$-estimates and Hölder continuity of weak solutions to elliptic equations with the general nonstandard growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 156 (2017), 144-166. | DOI | MR | JFM
[38] Zhang, C., Zhou, S.: Hölder regularity for the gradients of solutions of the strong $p(x)$-Laplacian. J. Math. Anal. Appl. 389 (2012), 1066-1077. | DOI | MR | JFM
[39] Zhang, H.: A global regularity result for the 2D generalized magneto-micropolar equations. J. Funct. Spaces 2022 (2022), 1501851, 6 pages. | DOI | MR | JFM
[40] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33-66. | DOI | MR | JFM
Cité par Sources :