$C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 365-396
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on $\Omega $. We prove the global $C^{1, \alpha }$ regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the $C^{1, \alpha }$ regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.
We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on $\Omega $. We prove the global $C^{1, \alpha }$ regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the $C^{1, \alpha }$ regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.
DOI : 10.21136/MB.2023.0055-23
Classification : 35B65, 35D30, 35J25
Keywords: nonstandard growth; $C^{1, \alpha }$ regularity; Hölder continuity; bounded weak solution; partial differential equations
@article{10_21136_MB_2023_0055_23,
     author = {Kim, Sungchol and Ri, Dukman},
     title = {$C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions},
     journal = {Mathematica Bohemica},
     pages = {365--396},
     year = {2024},
     volume = {149},
     number = {3},
     doi = {10.21136/MB.2023.0055-23},
     mrnumber = {4801107},
     zbl = {07953708},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0055-23/}
}
TY  - JOUR
AU  - Kim, Sungchol
AU  - Ri, Dukman
TI  - $C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions
JO  - Mathematica Bohemica
PY  - 2024
SP  - 365
EP  - 396
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0055-23/
DO  - 10.21136/MB.2023.0055-23
LA  - en
ID  - 10_21136_MB_2023_0055_23
ER  - 
%0 Journal Article
%A Kim, Sungchol
%A Ri, Dukman
%T $C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions
%J Mathematica Bohemica
%D 2024
%P 365-396
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0055-23/
%R 10.21136/MB.2023.0055-23
%G en
%F 10_21136_MB_2023_0055_23
Kim, Sungchol; Ri, Dukman. $C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 365-396. doi: 10.21136/MB.2023.0055-23

[1] Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156 (2001), 121-140. | DOI | MR | JFM

[2] Adamowicz, T., Toivanen, O.: Hölder continuity of quasiminimizers with nonstandard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 125 (2015), 433-456. | DOI | MR | JFM

[3] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces. Pure and Mathematics 140. Elsevier, Amsterdam (2003). | MR | JFM

[4] Antontsev, S., Shmarev, S.: Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up. Atlantis Studies in Differential Equations 4. Atlantis Press, Amsterdam (2015). | MR | JFM

[5] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersbg. Math. J. 27 (2016), 347-379. | DOI | MR | JFM

[6] Beck, L.: Elliptic Regularity Theory: A First Course. Lecture Notes of the Unione Matematica Italiana 19. Springer, Cham (2016). | DOI | MR | JFM

[7] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383-1406. | DOI | MR | JFM

[8] Piat, V. Chiadò, Coscia, A.: Hölder continuity of minimizers of functionals with variable growth exponent. Manuscr. Math. 93 (1997), 283-299. | DOI | MR | JFM

[9] Colombo, M., Mingione, G.: Bounded minimizers of double phase variational integrals. Arch. Ration. Mech. Anal. 218 (2015), 219-273. | DOI | MR | JFM

[10] Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015), 443-496. | DOI | MR | JFM

[11] Coscia, A., Mingione, G.: Hölder continuity of the gradient of $p(x)$-harmonic mappings. C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 363-368. | DOI | MR | JFM

[12] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Heidelberg (2013). | DOI | MR | JFM

[13] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM

[14] Diening, L., Schwarzacher, S.: Global gradient estimates for the $p(\cdot)$-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A 106 (2014), 70-85. | DOI | MR | JFM

[15] Eleuteri, M.: Hölder continuity results for a class of functionals with non-standard growth. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 7 (2004), 129-157. | MR | JFM

[16] Fan, X.: Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form. J. Differ. Equations 235 (2007), 397-417. | DOI | MR | JFM

[17] Fan, X., Zhao, D.: A class of De Giorgi type and Hölder continuity. Nonlinear Anal., Theory Methods Appl. 36 (1999), 295-318. | DOI | MR | JFM

[18] Fan, X., Zhao, D.: The quasi-minimizer of integral functionals with $m(x)$ growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 39 (2000), 807-816. | DOI | MR | JFM

[19] Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equations 18 (1993), 153-167. | DOI | MR | JFM

[20] Giannetti, F., Napoli, A. Passarelli di: Regularity results for a new class of functionals with non-standard growth conditions. J. Differ. Equations 254 (2013), 1280-1305. | DOI | MR | JFM

[21] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). | DOI | MR | JFM

[22] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003). | DOI | MR | JFM

[23] Gordadze, E., Meskhi, A., Ragusa, M. A.: On some extrapolation in generalized grand Morrey spaces and applications to partial differential equations. Trans. A. Razmadze Math. Inst. 176 (2022), 435-441. | MR | JFM

[24] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. | DOI | MR | JFM

[25] Harjulehto, P., Kuusi, T., Lukkari, T., Marola, N., Parviainen, M.: Harnack's inequality for quasiminimizers with nonstandard growth conditions. J. Math. Anal. Appl. 344 (2008), 504-520. | DOI | MR | JFM

[26] Kim, S., Ri, D.: Global boundedness and Hölder continuity of quasiminimizers with the general nonstandard growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 170-192. | DOI | MR | JFM

[27] Lieberman, G. M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal., Theory Methods Appl. 12 (1988), 1203-1219. | DOI | MR | JFM

[28] Lieberman, G. M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Commun. Partial Differ. Equations 16 (1991), 311-361. | DOI | MR | JFM

[29] Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), 267-284. | DOI | MR | JFM

[30] Mingione, G.: Regularity of minima: An invitation to the dark side of the calculus of variations. Appl. Math., Praha 51 (2006), 355-426. | DOI | MR | JFM

[31] Rădulescu, V. D., Repovš, D. D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). | DOI | MR | JFM

[32] Rajagopal, K. R., Růžička, M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13 (2001), 59-78. | DOI | JFM

[33] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM

[34] Toivanen, O.: Local boundedness of general minimizers with nonstandard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 81 (2013), 62-69. | DOI | MR | JFM

[35] Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equations 51 (1984), 126-150. | DOI | MR | JFM

[36] Yao, F.: Local Hölder regularity of the gradients for the elliptic $p(x)$-Laplacian equation. Nonlinear Anal., Theory Methods Appl., Ser. A 78 (2013), 79-85. | DOI | MR | JFM

[37] Yu, C., Ri, D.: Global $L^\infty$-estimates and Hölder continuity of weak solutions to elliptic equations with the general nonstandard growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 156 (2017), 144-166. | DOI | MR | JFM

[38] Zhang, C., Zhou, S.: Hölder regularity for the gradients of solutions of the strong $p(x)$-Laplacian. J. Math. Anal. Appl. 389 (2012), 1066-1077. | DOI | MR | JFM

[39] Zhang, H.: A global regularity result for the 2D generalized magneto-micropolar equations. J. Funct. Spaces 2022 (2022), 1501851, 6 pages. | DOI | MR | JFM

[40] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33-66. | DOI | MR | JFM

Cité par Sources :