$C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 365-396
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on $\Omega $. We prove the global $C^{1, \alpha }$ regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the $C^{1, \alpha }$ regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.
We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on $\Omega $. We prove the global $C^{1, \alpha }$ regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the $C^{1, \alpha }$ regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.
DOI :
10.21136/MB.2023.0055-23
Classification :
35B65, 35D30, 35J25
Keywords: nonstandard growth; $C^{1, \alpha }$ regularity; Hölder continuity; bounded weak solution; partial differential equations
Keywords: nonstandard growth; $C^{1, \alpha }$ regularity; Hölder continuity; bounded weak solution; partial differential equations
@article{10_21136_MB_2023_0055_23,
author = {Kim, Sungchol and Ri, Dukman},
title = {$C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions},
journal = {Mathematica Bohemica},
pages = {365--396},
year = {2024},
volume = {149},
number = {3},
doi = {10.21136/MB.2023.0055-23},
mrnumber = {4801107},
zbl = {07953708},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0055-23/}
}
TY - JOUR
AU - Kim, Sungchol
AU - Ri, Dukman
TI - $C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions
JO - Mathematica Bohemica
PY - 2024
SP - 365
EP - 396
VL - 149
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0055-23/
DO - 10.21136/MB.2023.0055-23
LA - en
ID - 10_21136_MB_2023_0055_23
ER -
%0 Journal Article
%A Kim, Sungchol
%A Ri, Dukman
%T $C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions
%J Mathematica Bohemica
%D 2024
%P 365-396
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0055-23/
%R 10.21136/MB.2023.0055-23
%G en
%F 10_21136_MB_2023_0055_23
Kim, Sungchol; Ri, Dukman. $C^{1,\alpha }$ regularity for elliptic equations with the general nonstandard growth conditions. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 365-396. doi: 10.21136/MB.2023.0055-23
Cité par Sources :