Keywords: (strong) endomorphism kernel property; congruence relation; Brouwerian semilattice; Brouwerian algebra; dual generalized Boolean algebra; direct sum; factorable congruences
@article{10_21136_MB_2023_0050_22,
author = {Guri\v{c}an, Jaroslav and Ghumashyan, Heghine},
title = {Strong endomorphism kernel property for finite {Brouwerian} semilattices and relative {Stone} algebras},
journal = {Mathematica Bohemica},
pages = {13--25},
year = {2024},
volume = {149},
number = {1},
doi = {10.21136/MB.2023.0050-22},
mrnumber = {4715553},
zbl = {07830540},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0050-22/}
}
TY - JOUR AU - Guričan, Jaroslav AU - Ghumashyan, Heghine TI - Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras JO - Mathematica Bohemica PY - 2024 SP - 13 EP - 25 VL - 149 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0050-22/ DO - 10.21136/MB.2023.0050-22 LA - en ID - 10_21136_MB_2023_0050_22 ER -
%0 Journal Article %A Guričan, Jaroslav %A Ghumashyan, Heghine %T Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras %J Mathematica Bohemica %D 2024 %P 13-25 %V 149 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0050-22/ %R 10.21136/MB.2023.0050-22 %G en %F 10_21136_MB_2023_0050_22
Guričan, Jaroslav; Ghumashyan, Heghine. Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras. Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 13-25. doi: 10.21136/MB.2023.0050-22
[1] Blyth, T. S., Fang, J., Silva, H. J.: The endomorphism kernel property in finite distributive lattices and de Morgan algebras. Commun. Algebra 32 (2004), 2225-2242. | DOI | MR | JFM
[2] Blyth, T. S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double $p$-algebras. Sci. Math. Jpn. 76 (2013), 227-234. | DOI | MR | JFM
[3] Blyth, T. S., Silva, H. J.: The strong endomorphism kernel property in Ockham algebras. Commun. Algebra 36 (2008), 1682-1694. | DOI | MR | JFM
[4] Davey, B. A.: Dualities for equational classes of Brouwerian algebras and Heyting algebras. Trans. Am. Math. Soc. 221 (1976), 119-146. | DOI | MR | JFM
[5] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive $p$-algebras. Southeast Asian Bull. Math. 37 (2013), 491-497. | MR | JFM
[6] Fang, J.: The strong endomorphism kernel property in double MS-algebras. Stud. Log. 105 (2017), 995-1013. | DOI | MR | JFM
[7] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property. Algebra Univers. 70 (2013), 393-401. | DOI | MR | JFM
[8] Fang, J., Sun, Z. J.: Finite abelian groups with the strong endomorphism kernel property. Acta Math. Sin., Engl. Ser. 36 (2020), 1076-1082. | DOI | MR | JFM
[9] Ghumashyan, H., Guričan, J.: Endomorphism kernel property for finite groups. Math. Bohem. 147 347-358 (2022). | DOI | MR | JFM
[10] Grätzer, G.: Lattice Theory: Foundation. Birkhäuser, Basel (2011). | DOI | MR | JFM
[11] Guričan, J.: A note on the endomorphism kernel property. JP J. Algebra Number Theory Appl. 33 (2014), 133-139. | JFM
[12] Guričan, J.: Strong endomorphism kernel property for Brouwerian algebras. JP J. Algebra Number Theory Appl. 36 (2015), 241-258. | DOI | JFM
[13] Guričan, J., Ploščica, M.: The strong endomorphism kernel property for modular $p$-algebras and distributive lattices. Algebra Univers. 75 (2016), 243-255. | DOI | MR | JFM
[14] Halušková, E.: Strong endomorphism kernel property for monounary algebras. Math. Bohem. 143 (2018), 161-171. | DOI | MR | JFM
[15] Halušková, E.: Some monounary algebras with EKP. Math. Bohem. 145 (2020), 401-414. | DOI | MR | JFM
[16] Hashimoto, J.: Ideal theory for lattices. Math. Jap. 2 (1952), 149-186. | MR | JFM
[17] Hecht, T., Katriňák, T.: Equational classes of relative Stone algebras. Notre Dame J. Formal Logic 13 (1972), 248-254. | DOI | MR | JFM
[18] Katriňák, T.: Die Kennzeichnung der distributiven pseudokomplementären Halbverbände. J. Reine Angew. Math. 241 (1970), 160-179 German. | DOI | MR | JFM
[19] Katriňák, T.: Remarks on the W. C. Nemitz's paper 'Semi-Boolean lattices'. Notre Dame J. Formal Logic 11 (1970), 425-430. | DOI | MR | JFM
[20] Katriňák, T.: Relativ Stonesche Halbverbände sind Verbände. Bull. Soc. R. Sci. Liège 40 (1971), 91-93 German. | MR | JFM
[21] Katriňák, T.: Die Kennzeichnung der beschränkten Brouwerschen Verbände. Czech. Math. J. 22 (1972), 427-434 German. | DOI | MR | JFM
[22] Köhler, P.: Brouwerian semilattices. Trans. Am. Math. Soc. 268 (1981), 103-126. | DOI | MR | JFM
[23] Nemitz, W. C.: Implicative semi-lattices. Trans. Am. Math. Soc. 117 (1965), 128-142. | DOI | MR | JFM
[24] Ploščica, M.: Affine completions of distributive lattices. Order 13 (1996), 295-311. | DOI | MR | JFM
Cité par Sources :