Recurrence and mixing recurrence of multiplication operators
Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 1-11
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a Banach space, $\mathcal {B}(X)$ the algebra of bounded linear operators on $X$ and $(J, \|{\cdot }\|_{J})$ an admissible Banach ideal of $\mathcal {B}(X)$. For $T\in \mathcal {B}(X)$, let $L_{J, T}$ and $R_{J, T}\in \mathcal {B}(J)$ denote the left and right multiplication defined by $L_{J, T}(A)=TA$ and $R_{J, T}(A)=AT$, respectively. In this paper, we study the transmission of some concepts related to recurrent operators between $T\in \mathcal {B}(X)$, and their elementary operators $L_{J, T}$ and $R_{J, T}$. In particular, we give necessary and sufficient conditions for $L_{J, T}$ and $R_{J, T}$ to be sequentially recurrent. Furthermore, we prove that $L_{J, T}$ is recurrent if and only if $T\oplus T$ is recurrent on $X\oplus X$. Moreover, we introduce the notion of a mixing recurrent operator and we show that $L_{J, T}$ is mixing recurrent if and only if $T$ is mixing recurrent.
Let $X$ be a Banach space, $\mathcal {B}(X)$ the algebra of bounded linear operators on $X$ and $(J, \|{\cdot }\|_{J})$ an admissible Banach ideal of $\mathcal {B}(X)$. For $T\in \mathcal {B}(X)$, let $L_{J, T}$ and $R_{J, T}\in \mathcal {B}(J)$ denote the left and right multiplication defined by $L_{J, T}(A)=TA$ and $R_{J, T}(A)=AT$, respectively. In this paper, we study the transmission of some concepts related to recurrent operators between $T\in \mathcal {B}(X)$, and their elementary operators $L_{J, T}$ and $R_{J, T}$. In particular, we give necessary and sufficient conditions for $L_{J, T}$ and $R_{J, T}$ to be sequentially recurrent. Furthermore, we prove that $L_{J, T}$ is recurrent if and only if $T\oplus T$ is recurrent on $X\oplus X$. Moreover, we introduce the notion of a mixing recurrent operator and we show that $L_{J, T}$ is mixing recurrent if and only if $T$ is mixing recurrent.
DOI : 10.21136/MB.2023.0047-22
Classification : 37B20, 47A16, 47B47
Keywords: hypercyclicity; recurrent operator; left multiplication operator; right multiplication operator; tensor product; Banach ideal of operators
@article{10_21136_MB_2023_0047_22,
     author = {Amouch, Mohamed and Lakrimi, Hamza},
     title = {Recurrence and mixing recurrence of multiplication operators},
     journal = {Mathematica Bohemica},
     pages = {1--11},
     year = {2024},
     volume = {149},
     number = {1},
     doi = {10.21136/MB.2023.0047-22},
     mrnumber = {4715552},
     zbl = {07830539},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0047-22/}
}
TY  - JOUR
AU  - Amouch, Mohamed
AU  - Lakrimi, Hamza
TI  - Recurrence and mixing recurrence of multiplication operators
JO  - Mathematica Bohemica
PY  - 2024
SP  - 1
EP  - 11
VL  - 149
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0047-22/
DO  - 10.21136/MB.2023.0047-22
LA  - en
ID  - 10_21136_MB_2023_0047_22
ER  - 
%0 Journal Article
%A Amouch, Mohamed
%A Lakrimi, Hamza
%T Recurrence and mixing recurrence of multiplication operators
%J Mathematica Bohemica
%D 2024
%P 1-11
%V 149
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0047-22/
%R 10.21136/MB.2023.0047-22
%G en
%F 10_21136_MB_2023_0047_22
Amouch, Mohamed; Lakrimi, Hamza. Recurrence and mixing recurrence of multiplication operators. Mathematica Bohemica, Tome 149 (2024) no. 1, pp. 1-11. doi: 10.21136/MB.2023.0047-22

[1] Akin, E.: Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions. Plenum Press, New York (1997). | DOI | MR | JFM

[2] Amouch, M., Lakrimi, H.: Supercyclicity of multiplication on Banach ideal of operators. Bol. Soc. Parana. Mat. (3) 40 (2022), 11 pages. | DOI | MR

[3] Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009). | DOI | MR | JFM

[4] Birkhoff, G. D.: Surface transformations and their dynamical applications. Acta Math. 43 (1922), 1-119 \99999JFM99999 47.0985.03. | DOI | MR

[5] Bonet, J., Martínez-Giménez, F., Peris, A.: Universal and chaotic multipliers on spaces of operators. J. Math. Anal. Appl. 297 (2004), 599-611. | DOI | MR | JFM

[6] Bonilla, A., Grosse-Erdmann, K. G., López-Martínez, A., Peris, A.: Frequently recurrent operators. Available at , 31 pages. | arXiv | MR

[7] Chan, K. C.: Hypercyclicity of the operator algebra for a separable Hilbert space. J. Oper. Theory 42 (1999), 231-244. | MR | JFM

[8] K. C. Chan, R. D. Taylor, Jr.: Hypercyclic subspaces of a Banach space. Integral Equations Oper. Theory 41 (2001), 381-388. | DOI | MR | JFM

[9] Costakis, G., Manoussos, A., Parissis, I.: Recurrent linear operators. Complex Anal. Oper. Theory 8 (2014), 1601-1643. | DOI | MR | JFM

[10] Costakis, G., Parissis, I.: Szemerédi's theorem, frequent hypercyclicity and multiple recurrence. Math. Scand. 110 (2012), 251-272. | DOI | MR | JFM

[11] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. M. B. Porter Lectures. Princeton University Press, Princeton (1981). | DOI | MR | JFM

[12] Galán, V. J., Martínez-Giménez, F., Oprocha, P., Peris, A.: Product recurrence for weighted backward shifts. Appl. Math. Inf. Sci. 9 (2015), 2361-2365. | MR

[13] Gilmore, C.: Dynamics of generalised derivations and elementary operators. Complex Anal. Oper. Theory 13 (2019), 257-274. | DOI | MR | JFM

[14] Gilmore, C., Saksman, E., Tylli, H.-O.: Hypercyclicity properties of commutator maps. Integral Equations Oper. Theory 87 (2017), 139-155. | DOI | MR | JFM

[15] Gohberg, I. C., Krein, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs 18. AMS, Providence (1969). | DOI | MR | JFM

[16] Gottschalk, W. H., Hedlund, G. H.: Topological Dynamics. Colloquium Publications of the American Mathematical Society 36. AMS, Providence (1955). | DOI | MR | JFM

[17] Grivaux, S.: Hypercyclic operators, mixing operators, and the bounded steps problem. J. Oper. Theory 54 (2005), 147-168. | MR | JFM

[18] Grosse-Erdmann, K.-G.: Universal families and hypercyclic operators. Bull. Am. Math. Soc. 36 (1999), 345-381. | DOI | MR | JFM

[19] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos. Universitext. Springer, Berlin (2011). | DOI | MR | JFM

[20] Gupta, M., Mundayadan, A.: Supercyclicity in spaces of operators. Result. Math. 70 (2016), 95-107. | DOI | MR | JFM

[21] Martínez-Giménez, F., Peris, A.: Universality and chaos for tensor products of operators. J. Approximation Theory 124 (2003), 7-24. | DOI | MR | JFM

[22] Petersson, H.: Hypercyclic conjugate operators. Integral Equations Oper. Theory 57 (2007), 413-423. | DOI | MR | JFM

[23] Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13 (1890), 1-270 French \99999JFM99999 22.0907.01.

[24] Rolewicz, S.: On orbits of elements. Stud. Math. 32 (1969), 17-22. | DOI | MR | JFM

[25] Shapiro, J. H.: Notes on the dynamics of linear operators. Available at \def{ }\brokenlink{ https://users.math.msu.edu/users/shapiro/Pubvit/Downloads/LinDynamics/{LynDynamics.html}}

[26] Yin, Z., Wei, Y.: Recurrence and topological entropy of translation operators. J. Math. Anal. Appl. 460 (2018), 203-215. | DOI | MR | JFM

[27] Yousefi, B., Rezaei, H.: Hypercyclicity on the algebra of Hilbert-Schmidt operators. Result. Math. 46 (2004), 174-180. | DOI | MR | JFM

[28] Yousefi, B., Rezaei, H.: On the supercyclicity and hypercyclicity of the operator algebra. Acta. Math. Sin., Engl. Ser. 24 (2008), 1221-1232. | DOI | MR | JFM

Cité par Sources :