The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 439-454
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\Delta $ be a numerical semigroup. In this work we show that $\mathcal {J}(\Delta ) =\{I\cup \nobreak \{0\}\colon I \mbox { is an ideal of } \Delta \}$ is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows us to compute the set $\mathcal {J}_a(\Delta )=\{S\in \mathcal {J}(\Delta )\colon \max (\Delta \backslash S)=a\}$ for a given $a\in \Delta .$ As a consequence, we obtain another algorithm that computes all the elements of $\mathcal {J}(\Delta )$ with a fixed genus.
Let $\Delta $ be a numerical semigroup. In this work we show that $\mathcal {J}(\Delta ) =\{I\cup \nobreak \{0\}\colon I \mbox { is an ideal of } \Delta \}$ is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows us to compute the set $\mathcal {J}_a(\Delta )=\{S\in \mathcal {J}(\Delta )\colon \max (\Delta \backslash S)=a\}$ for a given $a\in \Delta .$ As a consequence, we obtain another algorithm that computes all the elements of $\mathcal {J}(\Delta )$ with a fixed genus.
DOI :
10.21136/MB.2023.0038-23
Classification :
11Y16, 20M14
Keywords: numerical semigroup; ideal; Frobenius restricted variety; embedding dimension; Frobenius number; restricted Frobenius number; genus; multiplicity; Arf numerical semigroup; saturated semigroup
Keywords: numerical semigroup; ideal; Frobenius restricted variety; embedding dimension; Frobenius number; restricted Frobenius number; genus; multiplicity; Arf numerical semigroup; saturated semigroup
@article{10_21136_MB_2023_0038_23,
author = {Moreno-Fr{\'\i}as, Maria Angeles and Rosales, Jos\'e Carlos},
title = {The lattice of ideals of a numerical semigroup and its {Frobenius} restricted variety associated},
journal = {Mathematica Bohemica},
pages = {439--454},
year = {2024},
volume = {149},
number = {3},
doi = {10.21136/MB.2023.0038-23},
mrnumber = {4801112},
zbl = {07953713},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0038-23/}
}
TY - JOUR AU - Moreno-Frías, Maria Angeles AU - Rosales, José Carlos TI - The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated JO - Mathematica Bohemica PY - 2024 SP - 439 EP - 454 VL - 149 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0038-23/ DO - 10.21136/MB.2023.0038-23 LA - en ID - 10_21136_MB_2023_0038_23 ER -
%0 Journal Article %A Moreno-Frías, Maria Angeles %A Rosales, José Carlos %T The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated %J Mathematica Bohemica %D 2024 %P 439-454 %V 149 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0038-23/ %R 10.21136/MB.2023.0038-23 %G en %F 10_21136_MB_2023_0038_23
Moreno-Frías, Maria Angeles; Rosales, José Carlos. The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 439-454. doi: 10.21136/MB.2023.0038-23
Cité par Sources :