The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated
Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 439-454
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\Delta $ be a numerical semigroup. In this work we show that $\mathcal {J}(\Delta ) =\{I\cup \nobreak \{0\}\colon I \mbox { is an ideal of } \Delta \}$ is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows us to compute the set $\mathcal {J}_a(\Delta )=\{S\in \mathcal {J}(\Delta )\colon \max (\Delta \backslash S)=a\}$ for a given $a\in \Delta .$ As a consequence, we obtain another algorithm that computes all the elements of $\mathcal {J}(\Delta )$ with a fixed genus.
Let $\Delta $ be a numerical semigroup. In this work we show that $\mathcal {J}(\Delta ) =\{I\cup \nobreak \{0\}\colon I \mbox { is an ideal of } \Delta \}$ is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows us to compute the set $\mathcal {J}_a(\Delta )=\{S\in \mathcal {J}(\Delta )\colon \max (\Delta \backslash S)=a\}$ for a given $a\in \Delta .$ As a consequence, we obtain another algorithm that computes all the elements of $\mathcal {J}(\Delta )$ with a fixed genus.
DOI : 10.21136/MB.2023.0038-23
Classification : 11Y16, 20M14
Keywords: numerical semigroup; ideal; Frobenius restricted variety; embedding dimension; Frobenius number; restricted Frobenius number; genus; multiplicity; Arf numerical semigroup; saturated semigroup
@article{10_21136_MB_2023_0038_23,
     author = {Moreno-Fr{\'\i}as, Maria Angeles and Rosales, Jos\'e Carlos},
     title = {The lattice of ideals of a numerical semigroup and its {Frobenius} restricted variety associated},
     journal = {Mathematica Bohemica},
     pages = {439--454},
     year = {2024},
     volume = {149},
     number = {3},
     doi = {10.21136/MB.2023.0038-23},
     mrnumber = {4801112},
     zbl = {07953713},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0038-23/}
}
TY  - JOUR
AU  - Moreno-Frías, Maria Angeles
AU  - Rosales, José Carlos
TI  - The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated
JO  - Mathematica Bohemica
PY  - 2024
SP  - 439
EP  - 454
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0038-23/
DO  - 10.21136/MB.2023.0038-23
LA  - en
ID  - 10_21136_MB_2023_0038_23
ER  - 
%0 Journal Article
%A Moreno-Frías, Maria Angeles
%A Rosales, José Carlos
%T The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated
%J Mathematica Bohemica
%D 2024
%P 439-454
%V 149
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2023.0038-23/
%R 10.21136/MB.2023.0038-23
%G en
%F 10_21136_MB_2023_0038_23
Moreno-Frías, Maria Angeles; Rosales, José Carlos. The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated. Mathematica Bohemica, Tome 149 (2024) no. 3, pp. 439-454. doi: 10.21136/MB.2023.0038-23

[1] Arf, C.: Une interprétation algébrique de la suite des ordres de multiplicité d'une branche algébrique. Proc. Lond. Math. Soc., II. Ser. 50 (1948), 256-287 French. | DOI | MR | JFM

[2] Barucci, V.: Decomposition of ideals into irreducible ideals in numerical semigroups. J. Commut. Algebra 2 (2010), 281-294. | DOI | MR | JFM

[3] Barucci, V., Dobbs, D. E., Fontana, M.: Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analitycally Irreducible Local Domains. Memoirs of the American Mathematical Society 598. AMS, Providence (1997),\99999DOI99999 10.1090/memo/0598 . | MR | JFM

[4] Campillo, A.: On saturations of curve singularities (any characteristic). Singularities. Part 1 Proceedings of Symposia in Pure Mathematics 40. AMS, Providence (1983), 211-220. | DOI | MR | JFM

[5] Mata, F. Delgado de la, Jiménez, C. A. Núñez: Monomial rings and saturated rings. Géométrie algébrique et applications I Travaux en Cours 22. Hermann, Paris (1987), 23-34. | MR | JFM

[6] Lipman, J.: Stable ideals and Arf rings. Am. J. Math. 93 (1971), 649-685. | DOI | MR | JFM

[7] Moreno-Frías, M. A., Rosales, J. C.: Counting the ideals with given genus of a numerical semigroup. J. Algebra Appl. 22 (2023), Article ID 2330002, 21 pages. | DOI | MR | JFM

[8] Núñez, A.: Algebro-geometric properties of saturated rings. J. Pure Appl. Algebra 59 (1989), 201-214. | DOI | MR | JFM

[9] Pham, F.: Fractions lipschitziennes et saturations de Zariski des algèbres analytiques complexes. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 Gautier-Villars, Paris (1971), 649-654 French. | MR | JFM

[10] Robles-Pérez, A. M., Rosales, J. C.: Frobenius restricted varieties in numerical semigroups. Semigroup Forum 97 (2018), 478-492. | DOI | MR | JFM

[11] Rosales, J. C.: Principal ideals of numerical semigroups. Bull. Belg. Math. Soc. - Simon Stevin 10 (2003), 329-343. | DOI | MR | JFM

[12] Rosales, J. C., García-Sánchez, P. A.: Numerical Semigroups. Developments in Mathematics 20. Springer, New York (2009). | DOI | MR | JFM

[13] Zariski, O.: General theory of saturation and of saturated local rings I. Saturation of complete local domains of dimension one having arbitrary coefficient fields (of characteristic zero). Am. J. Math. 93 (1971), 573-684. | DOI | MR | JFM

[14] Zariski, O.: General theory of saturation and of saturated local rings II. Saturated local rings of dimension 1. Am. J. Math. 93 (1971), 872-964 \99999DOI99999 10.2307/2373741 . | MR | JFM

[15] Zariski, O.: General theory of saturation and of saturated local rings III. Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces. Am. J. Math. 97 (1975), 415-502. | DOI | MR | JFM

Cité par Sources :